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Abstract—Computation steering is a scientific and technical
area  which  provides  methods  of  understanding  a  state  of
running  high-performance  computing  (HPC)  programs  and
performing interactive control over such programs. This work
is  an  analysis  of   ideas  and  current  status  of  computation
steering.  The  main  idea  of  computation  steering  is  that
computation and visualization are performed simultaneously.
By the way, modern HPC systems approached the disbalance:
they have much more computing power than storage power.
Thus computations cannot output all  meaningful  data easily.
To solve this, steering technologies are used – with idea to run
in non-interactive mode, extracting program’s in-memory data
and saving it  for ordinal  post-hoc analysis.  This lead to new
demands on algorithms of correct data reduction, in purpose of
correctness of various following data analysis. Another idea of
modern  steering  is  a  configuration  of  parts  of  visualization
pipeline in text files separate from simulation codes. This allows
to relatively easy setup data transformations and connections
between  them  and  their  placement  on  various  locations,
including computational nodes.  Modern steering systems rely
on model: describe simulation data’s life using API and then
configure in text files what to do with that data in purpose of
visualization during simulation.
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I. INTRODUCTION

In  high-performance  computing  (HPC),  steering  is  a
process of data extraction from running HPC program and
also a process of controlling that program by modifications of
it’s state. An example of steering is presented on figure 1.

In short, with computation steering a researcher achieves
the following possibilities:

1. Gain extra knowledge of model behavior by examining
intermediate simulation state.

2. Prematurely  stop  simulation  that  fell  into  an
uninteresting trajectory thus saving resources.

3. Perform  faster  “what  if”  simulations  by  changing
running computation parameters.

The  history  of  computation  steering  is  as  old  as
computations itself, but it’s approaches changes along with
HPC technologies evolution. This paper introspects modern
HPC steering technologies and outlines ideas used in them.

II. TERMS OVERVIEW. PHENOMENA OF “IN SITU” APPROACH

There are a plenty of terms used. 

First of all, “computation steering” sometimes denoted as
“computational  steering”.  Then,  there  are  terms  “online
visualization”, “interactive steering” and “dynamic steering”.
I suppose that all terms mentioned above are used to identify
the same area –  while naming difference underlines the most
valuable aspect for particular point of view.

Fig. 1. The computation steering example: visualization during simulation.
The simulation is performing on 256K computing cores [1].

In contrast, “in situ visualization” has a different sense. 

For  computation  steering  is  does  not  matter  where
visualization  stages  (data  processing  in  purpose  of
visualization,  mapping  and  rendering)  are  performed.  It  is
ready  to  deal  with  all  combinations,  looking  on  task  of
joining simulation and visualization as a whole.

However  as  stated  in [1],  [2]  and fig.  2,  modern  HPC
systems approached to the disbalance: they have much more
computing capabilities than storage and I/O capabilities. In
that  disbalance,  a  researcher  cannot  save  all  computed
simulation  output  data  even  in  ordinal  simulation  pipeline
with  post-hoc  processing.  The  problem  increases  if
researcher is interested in intermediate simulation state.

This fact is complicated by another fact that visualization
is sensitive to  I/O bandwidth [3].  This  means that  even  if
simulation is able write out a data – visualization cannot read
this data due to I/O bottleneck with storage.

To overcome stated problems, the “in situ visualization”
[4]  is  used. It’s  idea is  to  put  all  or  parts  of  visualization
pipeline  closer  to  computations.  “Closer”  almost  always
imply putting them into computation resources  or  even  in
simulation codes.

For  example,  data  reduction  might  take  place  right  in
simulation,  and  reduced  data  is  saved  in  ordinal  way  for
following   post-hoc  analysis.  Another  example  –  data  is
copied out of computing memory onto dedicated nodes for
processing and rendering images for online analysis.

Important  aspect  of  “in  situ” approach  is  given  in  [3]:
“data reductions must be done carefully in order to preserve
the integrity of the underlying data when post-hoc analysis
will need to generate derived quantities from reduced data”.

I  suppose  that  in  situ  visualization  is  a  computation
steering  where  only  some  parts  of  visualization  pipeline
works simultaneously with simulation. Attention is paid to
have pipeline parts fastest access to simulation data. In situ
visualization  deals  with  both  variants  of  when  analysis  is
performed: during or after simulation.



III. STEERING SYSTEMS

Fig. 2.  A  plot  of  the  relative  bandwidth  of  system  components  in  a
supercomputer.  The  widths  of  the  blue  boxes  are  proportional  to  the
bandwidth of the associated component. [2].

Below we outline ideas that we extracted from some of
modern steering systems. We provide idea list incrementally,
with no  repeats.  Beside  mentioned  systems,  other  systems
which we reviewed – Libsim and Ascent – contains in most
similar  ideas.  Additional  ideas  may be found in ParaView
Catalyst, ADIOS and PAVE and other systems.

A. The SENSEI framework
The  Sensei  [5]  is  a  US-based  open-source  project

available at sensei-insitu.org website. It suggest to instrument
(extend) simulation code with 2 extra calls:

1. Describe computation data distribution in a memory of 
computing nodes (the data adapter in Sensei’s terms)

2. Call  synchronization  function  during  computation
iterations (the analysis adapter in Sensei’s terms).

The step 1 provides information to Sensei  about which
data  a  program  has  and  how  is  it  distributed  across  it’s
processes memory. Such approach with description is  widely
used, as it will be seen in the following sections.

The step 2, however, is tricky. In Sensei’s terms, this is
analysis step, and it suggest to put any code that is desired for
that purpose there. But in practice, the Sensei provides own
universal  analyze  code  which  is  configurable  via  external
xml  file.  In  that  file  a  researcher  may  describe  a  such
complex elements as:

a) Data reduction and transformation in-place (e.g. in 
simulation processes).

b) Transmission to outer space (from simulation) for 
other on-line processing.

c) Storage actions on extracted data and/or connection 
with on-line visualization tools, among with 
configuration for such tools.

d) Combinations of the above.

I  suggest  to  look on steps  1-2 in  metaphorical  way of
“embedding a representative” of visualization pipeline into
simulation.  In  this  point  of  view,  these  steps  are  parts  of
visualization  pipeline  which  are  physically  placed  into
simulation code for purpose of overall coding simplicity. The
stated  metaphor  in  a  wide  sense  was  noted  by  Mikhail
Bakhterev from N.N. Krasovskii Institute.

This representative may perform various tasks, including
rendering  on  computing  nodes.  The  Sensei,  in  particular,
implemented a feature of interpreting user-defined external
python scripts inside an analysis adapter.

Thanks to external  textual  configuration (e.g.  xml file),
the  visualization  and  investigation  tools  might  be  easily
reconfigured without any modification to simulation codes.  

A user  provides configuration, runs the simulation, and
achieves his aim. When user’s aim changes (for example, she
decides to get new data extracts) – she modifies configuration
file  and  achieves  new results.  Actually  user  reprograms  a
visualization  pipeline  when she changes  that  configuration
file.

One  additional  interesting  aspect  to  be  noted  is  an
implemented  ability  to  “proxy”  computation  data  out  of
computation  processes  memory.  The  Sensei  has  built-in
analysis adapter type which transfers data to outside, and it’s
other  process  in  outside  re-publishes  this  data  again  (via
special data adapter), and thus a data may be processed by
another analyses codes in outside, like a chain.

This might be thought in turn as providing representative
of computing program. Analysis codes connected with that
representative even have no knowledge about where a real
program is being running.

It  is  claimed  that  the  Sensei  successfully  worked  in
configuration with 1 million of computing nodes [6]. By the
way,  the Sensei  doesn’t  deal  with transport,  using for  that
purpose  such  frameworks  as  ADIOS,  Ascent,  Libsim  or
libIS, and playing a role of reconfigurable orchestrator.

B. LibIS
The libIS [7] library is connected with OSPRay rendering

technology by Intel. Website: github.com/ospray/libIS.

The  library  uses  almost  same  approach  as  Sensei:
describe data and then provide access to that data using per-
iteration  calls  to  the  library.  When  data  is  requested  by
clients,  embedded  per-iterations  library  calls  perform
asynchronous write-out operation.

LibIS provides following types for description of data and
it’s distribution across node’s memory: 3d arrays (e.g. grid
fields), 1D arrays, and arrays of structures (representing for
example particle systems). This is not big amount in contrast
to Sensei’s, which uses vtkDataModel leading to more than
dozen of data types. But it seems enough to be compatible
with some simulation codes due to simplicity.

In contrast to Sensei’s “in situ”, libIS adopts “in transit”
approach. In this approach, data for visualization purposes is
processed  outside  of  simulation  processes.  E.g.  in  per-
iterations calls,  the libIS provides  access  to described data
only  for  possible  transportation  to  outside.  Forthcoming
transformations of data are desired to be done somewhere in
outer space by libIS “clients”.

The networking with client is done in two stages: first,
client  sends  connection  request  via  ordinal  IP  port  to
computational process of rank 0, and then a communication
is  performed  via  newly-established  dedicated  MPI  rank.
There is no server or routing nodes in library: libIS assumes
that client nodes resides in HPC network, probably on same
type of computing nodes as simulation itself.  LibIS assumes
there are N client nodes accessing M simulation nodes and
thus upon client’s query each simulation node is instructed to
send it’s data to one of library-chosen client node in a point-
to-point manner.

LibIS  client’s  query  language  is  simple.  The  query
response consist of number of records (e.g. partial responses
each  from  some  computing  node),  where  each  record
contains local coordinates (corresponding to that node), 0 or
more field data records, and 0 or more particle array records.

https://sensei-insitu.org/
https://github.com/ospray/libIS


LibIS  may  be  used  by  Sensei  as  a  transport  layer.
Moreover,  libIS  provides  unpacking  capabilities  back  to
Sensei’s  data  model.  Thus  simulation  users  may  not  only
connect  to  Sensei-instrumented  simulation using  libIS,  but
connect other Sensei-compatible tools to libIS-instrumented
simulations.

It is interesting that libIS uses following assumptions. 1)
Each computation node owns one cubical  part  of common
world,  2)  Number  of  client  nodes  N  is  less  or  equal  to
simulation nodes M. These assumptions had simplified API
of libIS and probably the library’s code itself.

At the moment of writing this paper, it was known that
libIS  was  successfully  tested  with  simulation  of  128
computing nodes and 2 client nodes [7].

C. ESPN
ESPN steering system [8] looks like libIS in it's internal

spirit. ESPN is an abandoned project, but even in that state it
outlines the following useful ideas:

1.  A possibility to connect  to  simulation with different
kind of clients simultaneously. For example, one client might
perform parameters lookup and steering, and another client
at the same time might visualize a data on tiled-display wall.

2. An access to computing processes should be somehow
synchronized  (to  perform  data  access  actions  at  logically
same simulation iterations).

D. Damaris
The Damaris [9] is a product of INRIA, a French national

research institution. Project website: project.inria.fr/damaris/.

The Damaris has very interesting approach on describing
data  layout  inside  simulation  processes  memory  using
external  xml  file.  It  also uses  that  xml  file  for  describing
Damaris  system  launch  configuration  (dedicated  cores  or
dedicated  nodes,  so  on).  Moreover,  Damaris  asks  user  to
describe  important  computation  parameters  (for  example
sizes of a grid) in that file, and these parameters may be used
in other xml locations in arithmetic expressions, and also they
are available in simulation code via read and write methods.

Damaris uses instrumentation cycle different from Sensei.
Instead of “describing” data layout, a user has to “write” data
of a given name with given pointer,  and the name should
correspond to one described in xml file (mentioned above).
For some reason, during write operation Damaris copies data
inside itself. It also provides special alloc and free procedures
as alternative, but even in that case is is not so transparent for
simulation codes as just the publishing of existing pointers
(probably a shared memory approach used by Damaris is the
reason for such behavior).

It  is  interesting  that  Damaris  uses  shared  memory  for
inter-memory  communications  with  simulation  code.  E.g.
Damaris library code seems only publishes data to a shared
memory,  and  transmit  signals  for  accompanying  in  situ
processes when data is ready to grab.

Damaris  relies  on  assumption  that  simulation  code  is
iterative, asking user to call  damaris_end_iteration function
at each cycle and also it internally counting those iterations.
In  Damaris,  same  as  in  libIS,  each  simulation  process  is
assigned  to  one  steering  server  process  (on  same  node  at
some  core  or  on  dedicated  node).  Thus  upon
damaris_end_iteration (e.g. sync) call a corresponding server
node is notified. It is tricky how Damaris assign server nodes:
it chooses them among computation nodes and assumes that
they  will  enter  in  forever  loop  (which  is  located  in
damaris_start code).

Damaris,  same as Sensei, suggest a developers to write
plugins. A plugin is supposed to provide response to some
event, and the connection between event names and plugins
is defined in xml file mentioned above. Moreover, developer
might reside those plugin codes right in simulation processes.
After a plugin code is called, it has access to Damaris internal
API and may perform any actions.

Damaris is stated to work with 16K cores simulations [9].

IV. REMARKABLE EFFORTS

In addition to ideas we found in steering systems, other
ideas are located around them in various projects and other
efforts. In this section we provide some interesting ones.

A. Real case: Data Reduction for Vector Field

In  paper  [3]  scientists  were  interested  on plasma field
behavior  between  simulation  checkpoints.  Each  iteration
data was about 20TB and thus it was not subject to save it as
is (at each iteration). It was decided to perform “in situ” data
reduction: a data field was reduced to ~45x45 mesh which
was in turn saved for each iteration, and due to it’s size it
was able to be visualized. 

The reduction was made with big care, so scientist may
still generate various derivatives from the reduced data and
this derivatives were correct, e.g. same as derivatives from
original data. 

Fig. 3. Described fusion simulation and visualization data flow.

Simulation nodes were  instrumented  with ADIOS API
routines.  Preliminary  work  (e.g.  particle  sampling)  is
performed inside the simulation, and it’s results are flushed
out via ADIOS to special I/O-staging nodes. These staging
nodes transit  data  to  VTK-M parallel  nodes,  and  latter  in
turn generate final reduced mesh. The solution was running
on 1024 simulation, 12 staging and 32 visualization nodes
(see fig. 3). 

The referred work as a whole is a great example of how
things are done. Interestingly, this work leverages only data
extraction  for  post-hoc  visualization  purpose,  abandoning
online analysis and steering – which is probably enough.

B. NVidia Omniverse proposal for in situ

In its proposal, NVidia suggested to connect ParaView
Catalyst steering system to Omniverse 3D scenes portal [10]
using  special  software  adapter.  Thus  a  data  from  steered
simulation  may  be  uploaded  via  Catalyst  to  Omniverse's
micro-service  and updated  during simulation runtime,  and
then visualized using various compatible rendering software
kits – during simulation runtime or post-hoc. It uses Pixar
Universal Scene Description format [11] for 3D scenes with

https://project.inria.fr/damaris/


incremental  patching  feature,  which  is  useful  for  runtime
updates. 

Current cave-at of suggested proposal is that data sent to
Omniverse  has to be already somehow reduced, because it’s
servers does not support data of HPC-scale sizes.

The  proposal  might  be  interesting  if  researcher  will
receive  extra  benefits  from a  data  residing  in  Omniverse.
Currently,  for  example,  NVidia  suggests  to  transparently
transfer  data  to  game  engines:  thus  simulation  might
generate  visualization  on-line  as  an  artifact  for  a  bigger
(gaming) world.

Other possible benefits might be in found if Omniverse
will  play a role of  storage  and transport  to  various  tools.
However even in that case it is unclear how it may compete
with  such  thing  as  CinemaScience  data  format  [12].
Probably it is better to create microservice-based hosting for
CinemaScience databases, and even maybe incorporating the
mentioned Pixar scenes inside those databases. 

C. Comparing the efficiency of visualization placement 

Two extreme approaches of in situ visualization, in-place
and in-transit, were investigated in [13]. Some of conclusions
of the work are:

1. Running  visualization  pipeline  right  in  simulation
processes  in  time  slicing  mode  is  superior  when
simulation iteration cycle is fast.

2. Sometimes it  is more efficient to put visualization
pipeline on dedicated nodes, for example reducing
communications required by parallel rendering.

Remarkable  that  the  work  accounts  all  parts  of
visualization  pipeline,  including  (parallel)  rendering.  The
work  provides  very  comprehensive  analysis  of  various
processes going on during in-place and in-transit schemes.

V. CONCLUSIONS

It  is  interesting  that  investigated  computation  steering
systems neither rely on network protocol, nor have published
conceptual  protocols  of  their  operation.  I  think  this  is  a
mismatching position in a long-term scale both for achieving
new developers and for achieving new implementations for
other infrastructures.

An  exciting  trend  (or  at  least  an  approach)  is  to  use
external  configuration  files  for  computation  steering
operations.  They  are  devoted  for  describing  visualization
pipeline: data voyage and transformation, visualization back-
ends  and  their  configuration,  and  even  data  layout  in
simulation  (as  in  Damaris  project).  This  fact  means  that
whole computation steering process is programmed in those
configuration  files,  including  behavior  and  codes  that  are
lately-bound into simulation processes.

It seems that big part in making simulation steerable is a
description  of  various  data  types  and  memory  layouts  of
simulation data in  processes  memory.  Industry standard  is
required here, and it is still missing. Maybe vtkDataModel or
Conduit [14] are a good staring point for that purpose.

It looks like all steering systems assume that data layout
doesn’t not change during simulation and is always present.
But they seems do not restrict users to obey that – they are
free to publish computation data at any time.

Also  it  seems  that  a  lot  of  efforts  will  be  spent  onto
finding methods of correct data simplification for extraction
from  computation  process.  An  exciting  examples  of  such
efforts are [3] and [15].

Of course, deeper research of the subject should consider
running  mentioned  software  frameworks,  comparing  both
their robustness and usability. This is subject to future work.
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