
Analyzing an Ideas Used in Modern
HPC Computation Steering

Pavel Vasev
Computer visualization lab

N.N. Krasovskii Institute of the Russian Academy of Sciences
Ekaterinburg, Russia
vasev@imm.uran.ru

Abstract—Computation steering is a scientific and technical
area which provides methods of understanding a state of
running high-performance computing (HPC) programs and
performing interactive control over such programs. This work
is an analysis of ideas and current status of computation
steering. The main idea of computation steering is that
computation and visualization are performed simultaneously.
By the way, modern HPC systems approached the disbalance:
they have much more computing power than storage power.
Thus computations cannot output all meaningful data easily.
To solve this, steering technologies are used – with idea to run
in non-interactive mode, extracting program’s in-memory data
and saving it for ordinal post-hoc analysis. This lead to new
demands on algorithms of correct data reduction, in purpose of
correctness of various following data analysis. Another idea of
modern steering is a configuration of parts of visualization
pipeline in text files separate from simulation codes. This allows
to relatively easy setup data transformations and connections
between them and their placement on various locations,
including computational nodes. Modern steering systems rely
on model: describe simulation data’s life using API and then
configure in text files what to do with that data in purpose of
visualization during simulation.

Keywords—computation steering, on-line visualization, HPC
visualization, in situ visualization, scientific visualization

I. INTRODUCTION

In high-performance computing (HPC), steering is a
process of data extraction from running HPC program and
also a process of controlling that program by modifications of
it’s state. An example of steering is presented on figure 1.

In short, with computation steering a researcher achieves
the following possibilities:

1. Gain extra knowledge of model behavior by examining
intermediate simulation state.

2. Prematurely stop simulation that fell into an
uninteresting trajectory thus saving resources.

3. Perform faster “what if” simulations by changing
running computation parameters.

The history of computation steering is as old as
computations itself, but it’s approaches changes along with
HPC technologies evolution. This paper introspects modern
HPC steering technologies and outlines ideas used in them.

II. TERMS OVERVIEW. PHENOMENA OF “IN SITU” APPROACH

There are a plenty of terms used.

First of all, “computation steering” sometimes denoted as
“computational steering”. Then, there are terms “online
visualization”, “interactive steering” and “dynamic steering”.
I suppose that all terms mentioned above are used to identify
the same area – while naming difference underlines the most
valuable aspect for particular point of view.

Fig. 1. The computation steering example: visualization during simulation.
The simulation is performing on 256K computing cores [1].

In contrast, “in situ visualization” has a different sense.

For computation steering is does not matter where
visualization stages (data processing in purpose of
visualization, mapping and rendering) are performed. It is
ready to deal with all combinations, looking on task of
joining simulation and visualization as a whole.

However as stated in [1], [2] and fig. 2, modern HPC
systems approached to the disbalance: they have much more
computing capabilities than storage and I/O capabilities. In
that disbalance, a researcher cannot save all computed
simulation output data even in ordinal simulation pipeline
with post-hoc processing. The problem increases if
researcher is interested in intermediate simulation state.

This fact is complicated by another fact that visualization
is sensitive to I/O bandwidth [3]. This means that even if
simulation is able write out a data – visualization cannot read
this data due to I/O bottleneck with storage.

To overcome stated problems, the “in situ visualization”
[4] is used. It’s idea is to put all or parts of visualization
pipeline closer to computations. “Closer” almost always
imply putting them into computation resources or even in
simulation codes.

For example, data reduction might take place right in
simulation, and reduced data is saved in ordinal way for
following post-hoc analysis. Another example – data is
copied out of computing memory onto dedicated nodes for
processing and rendering images for online analysis.

Important aspect of “in situ” approach is given in [3]:
“data reductions must be done carefully in order to preserve
the integrity of the underlying data when post-hoc analysis
will need to generate derived quantities from reduced data”.

I suppose that in situ visualization is a computation
steering where only some parts of visualization pipeline
works simultaneously with simulation. Attention is paid to
have pipeline parts fastest access to simulation data. In situ
visualization deals with both variants of when analysis is
performed: during or after simulation.

III. STEERING SYSTEMS

Fig. 2. A plot of the relative bandwidth of system components in a
supercomputer. The widths of the blue boxes are proportional to the
bandwidth of the associated component. [2].

Below we outline ideas that we extracted from some of
modern steering systems. We provide idea list incrementally,
with no repeats. Beside mentioned systems, other systems
which we reviewed – Libsim and Ascent – contains in most
similar ideas. Additional ideas may be found in ParaView
Catalyst, ADIOS and PAVE and other systems.

A. The SENSEI framework
The Sensei [5] is a US-based open-source project

available at sensei-insitu.org website. It suggest to instrument
(extend) simulation code with 2 extra calls:

1. Describe computation data distribution in a memory of
computing nodes (the data adapter in Sensei’s terms)

2. Call synchronization function during computation
iterations (the analysis adapter in Sensei’s terms).

The step 1 provides information to Sensei about which
data a program has and how is it distributed across it’s
processes memory. Such approach with description is widely
used, as it will be seen in the following sections.

The step 2, however, is tricky. In Sensei’s terms, this is
analysis step, and it suggest to put any code that is desired for
that purpose there. But in practice, the Sensei provides own
universal analyze code which is configurable via external
xml file. In that file a researcher may describe a such
complex elements as:

a) Data reduction and transformation in-place (e.g. in
simulation processes).

b) Transmission to outer space (from simulation) for
other on-line processing.

c) Storage actions on extracted data and/or connection
with on-line visualization tools, among with
configuration for such tools.

d) Combinations of the above.

I suggest to look on steps 1-2 in metaphorical way of
“embedding a representative” of visualization pipeline into
simulation. In this point of view, these steps are parts of
visualization pipeline which are physically placed into
simulation code for purpose of overall coding simplicity. The
stated metaphor in a wide sense was noted by Mikhail
Bakhterev from N.N. Krasovskii Institute.

This representative may perform various tasks, including
rendering on computing nodes. The Sensei, in particular,
implemented a feature of interpreting user-defined external
python scripts inside an analysis adapter.

Thanks to external textual configuration (e.g. xml file),
the visualization and investigation tools might be easily
reconfigured without any modification to simulation codes.

A user provides configuration, runs the simulation, and
achieves his aim. When user’s aim changes (for example, she
decides to get new data extracts) – she modifies configuration
file and achieves new results. Actually user reprograms a
visualization pipeline when she changes that configuration
file.

One additional interesting aspect to be noted is an
implemented ability to “proxy” computation data out of
computation processes memory. The Sensei has built-in
analysis adapter type which transfers data to outside, and it’s
other process in outside re-publishes this data again (via
special data adapter), and thus a data may be processed by
another analyses codes in outside, like a chain.

This might be thought in turn as providing representative
of computing program. Analysis codes connected with that
representative even have no knowledge about where a real
program is being running.

It is claimed that the Sensei successfully worked in
configuration with 1 million of computing nodes [6]. By the
way, the Sensei doesn’t deal with transport, using for that
purpose such frameworks as ADIOS, Ascent, Libsim or
libIS, and playing a role of reconfigurable orchestrator.

B. LibIS
The libIS [7] library is connected with OSPRay rendering

technology by Intel. Website: github.com/ospray/libIS.

The library uses almost same approach as Sensei:
describe data and then provide access to that data using per-
iteration calls to the library. When data is requested by
clients, embedded per-iterations library calls perform
asynchronous write-out operation.

LibIS provides following types for description of data and
it’s distribution across node’s memory: 3d arrays (e.g. grid
fields), 1D arrays, and arrays of structures (representing for
example particle systems). This is not big amount in contrast
to Sensei’s, which uses vtkDataModel leading to more than
dozen of data types. But it seems enough to be compatible
with some simulation codes due to simplicity.

In contrast to Sensei’s “in situ”, libIS adopts “in transit”
approach. In this approach, data for visualization purposes is
processed outside of simulation processes. E.g. in per-
iterations calls, the libIS provides access to described data
only for possible transportation to outside. Forthcoming
transformations of data are desired to be done somewhere in
outer space by libIS “clients”.

The networking with client is done in two stages: first,
client sends connection request via ordinal IP port to
computational process of rank 0, and then a communication
is performed via newly-established dedicated MPI rank.
There is no server or routing nodes in library: libIS assumes
that client nodes resides in HPC network, probably on same
type of computing nodes as simulation itself. LibIS assumes
there are N client nodes accessing M simulation nodes and
thus upon client’s query each simulation node is instructed to
send it’s data to one of library-chosen client node in a point-
to-point manner.

LibIS client’s query language is simple. The query
response consist of number of records (e.g. partial responses
each from some computing node), where each record
contains local coordinates (corresponding to that node), 0 or
more field data records, and 0 or more particle array records.

https://sensei-insitu.org/
https://github.com/ospray/libIS

LibIS may be used by Sensei as a transport layer.
Moreover, libIS provides unpacking capabilities back to
Sensei’s data model. Thus simulation users may not only
connect to Sensei-instrumented simulation using libIS, but
connect other Sensei-compatible tools to libIS-instrumented
simulations.

It is interesting that libIS uses following assumptions. 1)
Each computation node owns one cubical part of common
world, 2) Number of client nodes N is less or equal to
simulation nodes M. These assumptions had simplified API
of libIS and probably the library’s code itself.

At the moment of writing this paper, it was known that
libIS was successfully tested with simulation of 128
computing nodes and 2 client nodes [7].

C. ESPN
ESPN steering system [8] looks like libIS in it's internal

spirit. ESPN is an abandoned project, but even in that state it
outlines the following useful ideas:

1. A possibility to connect to simulation with different
kind of clients simultaneously. For example, one client might
perform parameters lookup and steering, and another client
at the same time might visualize a data on tiled-display wall.

2. An access to computing processes should be somehow
synchronized (to perform data access actions at logically
same simulation iterations).

D. Damaris
The Damaris [9] is a product of INRIA, a French national

research institution. Project website: project.inria.fr/damaris/.

The Damaris has very interesting approach on describing
data layout inside simulation processes memory using
external xml file. It also uses that xml file for describing
Damaris system launch configuration (dedicated cores or
dedicated nodes, so on). Moreover, Damaris asks user to
describe important computation parameters (for example
sizes of a grid) in that file, and these parameters may be used
in other xml locations in arithmetic expressions, and also they
are available in simulation code via read and write methods.

Damaris uses instrumentation cycle different from Sensei.
Instead of “describing” data layout, a user has to “write” data
of a given name with given pointer, and the name should
correspond to one described in xml file (mentioned above).
For some reason, during write operation Damaris copies data
inside itself. It also provides special alloc and free procedures
as alternative, but even in that case is is not so transparent for
simulation codes as just the publishing of existing pointers
(probably a shared memory approach used by Damaris is the
reason for such behavior).

It is interesting that Damaris uses shared memory for
inter-memory communications with simulation code. E.g.
Damaris library code seems only publishes data to a shared
memory, and transmit signals for accompanying in situ
processes when data is ready to grab.

Damaris relies on assumption that simulation code is
iterative, asking user to call damaris_end_iteration function
at each cycle and also it internally counting those iterations.
In Damaris, same as in libIS, each simulation process is
assigned to one steering server process (on same node at
some core or on dedicated node). Thus upon
damaris_end_iteration (e.g. sync) call a corresponding server
node is notified. It is tricky how Damaris assign server nodes:
it chooses them among computation nodes and assumes that
they will enter in forever loop (which is located in
damaris_start code).

Damaris, same as Sensei, suggest a developers to write
plugins. A plugin is supposed to provide response to some
event, and the connection between event names and plugins
is defined in xml file mentioned above. Moreover, developer
might reside those plugin codes right in simulation processes.
After a plugin code is called, it has access to Damaris internal
API and may perform any actions.

Damaris is stated to work with 16K cores simulations [9].

IV. REMARKABLE EFFORTS

In addition to ideas we found in steering systems, other
ideas are located around them in various projects and other
efforts. In this section we provide some interesting ones.

A. Real case: Data Reduction for Vector Field

In paper [3] scientists were interested on plasma field
behavior between simulation checkpoints. Each iteration
data was about 20TB and thus it was not subject to save it as
is (at each iteration). It was decided to perform “in situ” data
reduction: a data field was reduced to ~45x45 mesh which
was in turn saved for each iteration, and due to it’s size it
was able to be visualized.

The reduction was made with big care, so scientist may
still generate various derivatives from the reduced data and
this derivatives were correct, e.g. same as derivatives from
original data.

Fig. 3. Described fusion simulation and visualization data flow.

Simulation nodes were instrumented with ADIOS API
routines. Preliminary work (e.g. particle sampling) is
performed inside the simulation, and it’s results are flushed
out via ADIOS to special I/O-staging nodes. These staging
nodes transit data to VTK-M parallel nodes, and latter in
turn generate final reduced mesh. The solution was running
on 1024 simulation, 12 staging and 32 visualization nodes
(see fig. 3).

The referred work as a whole is a great example of how
things are done. Interestingly, this work leverages only data
extraction for post-hoc visualization purpose, abandoning
online analysis and steering – which is probably enough.

B. NVidia Omniverse proposal for in situ

In its proposal, NVidia suggested to connect ParaView
Catalyst steering system to Omniverse 3D scenes portal [10]
using special software adapter. Thus a data from steered
simulation may be uploaded via Catalyst to Omniverse's
micro-service and updated during simulation runtime, and
then visualized using various compatible rendering software
kits – during simulation runtime or post-hoc. It uses Pixar
Universal Scene Description format [11] for 3D scenes with

https://project.inria.fr/damaris/

incremental patching feature, which is useful for runtime
updates.

Current cave-at of suggested proposal is that data sent to
Omniverse has to be already somehow reduced, because it’s
servers does not support data of HPC-scale sizes.

The proposal might be interesting if researcher will
receive extra benefits from a data residing in Omniverse.
Currently, for example, NVidia suggests to transparently
transfer data to game engines: thus simulation might
generate visualization on-line as an artifact for a bigger
(gaming) world.

Other possible benefits might be in found if Omniverse
will play a role of storage and transport to various tools.
However even in that case it is unclear how it may compete
with such thing as CinemaScience data format [12].
Probably it is better to create microservice-based hosting for
CinemaScience databases, and even maybe incorporating the
mentioned Pixar scenes inside those databases.

C. Comparing the efficiency of visualization placement

Two extreme approaches of in situ visualization, in-place
and in-transit, were investigated in [13]. Some of conclusions
of the work are:

1. Running visualization pipeline right in simulation
processes in time slicing mode is superior when
simulation iteration cycle is fast.

2. Sometimes it is more efficient to put visualization
pipeline on dedicated nodes, for example reducing
communications required by parallel rendering.

Remarkable that the work accounts all parts of
visualization pipeline, including (parallel) rendering. The
work provides very comprehensive analysis of various
processes going on during in-place and in-transit schemes.

V. CONCLUSIONS

It is interesting that investigated computation steering
systems neither rely on network protocol, nor have published
conceptual protocols of their operation. I think this is a
mismatching position in a long-term scale both for achieving
new developers and for achieving new implementations for
other infrastructures.

An exciting trend (or at least an approach) is to use
external configuration files for computation steering
operations. They are devoted for describing visualization
pipeline: data voyage and transformation, visualization back-
ends and their configuration, and even data layout in
simulation (as in Damaris project). This fact means that
whole computation steering process is programmed in those
configuration files, including behavior and codes that are
lately-bound into simulation processes.

It seems that big part in making simulation steerable is a
description of various data types and memory layouts of
simulation data in processes memory. Industry standard is
required here, and it is still missing. Maybe vtkDataModel or
Conduit [14] are a good staring point for that purpose.

It looks like all steering systems assume that data layout
doesn’t not change during simulation and is always present.
But they seems do not restrict users to obey that – they are
free to publish computation data at any time.

Also it seems that a lot of efforts will be spent onto
finding methods of correct data simplification for extraction
from computation process. An exciting examples of such
efforts are [3] and [15].

Of course, deeper research of the subject should consider
running mentioned software frameworks, comparing both
their robustness and usability. This is subject to future work.

ACKNOWLEDGMENT

Pavel Vasev thanks Vladimir Averbukh [16], the head of
Computer visualization lab at N.N. Krasovskii Institute, for
unparalleled visionary and inspiring leadership during years.

Also Pavel Vasev thanks all the authors of referenced
literature for their time, efforts, and detailed publications.
Especially he thanks Kenneth Moreland for his brilliant
ability to express ideas in a short and easy language.

REFERENCES

[1] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K.
Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel,
“In Situ Methods, Infrastructures, and Applications on High
Performance Computing Platforms”, in Computer Graphics Forum,
2016, vol. 35, no. 3, pp. 577-597.

[2] Moreland K., “The tensions of in situ visualization”, in IEEE
Computer Graphics & Applications, March/April 2016, pp. 5–9, doi:
10.1109/MCG.2016.35

[3] Kress J., Choi J., Klasky S., Churchill M., Childs H., Pugmire D.,
“Binning Based Data Reduction for Vector Field Data of a Particle-In-
Cell Fusion Simulation”, in High Performance Computing, ISC High
Performance, Yokota R., Weiland M., Shalf J., Alam S., Eds. 2018.
Lecture Notes in Computer Science, vol. 11203. Springer, Cham, doi:
10.1007/978-3-030-02465-9_15

[4] Childs, H., “The in situ terminology project”, [Online]. Available:
https://ix.cs.uoregon.edu/~hank/insituterminology/

[5] “In Situ Analysis and Visualization with Sensei and Ascent” tutorial
at SC ’19 International Conference. [Online]. Available:
https://sc19.supercomputing.org/program/tutorials/

[6] U. Ayachit et al., "Performance Analysis, Design Considerations, and
Applications of Extreme-Scale In Situ Infrastructures", SC '16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Salt Lake City, UT,
2016, pp. 921-932.

[7] Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph
Insley, Venkatram Vishwanath, Nicola Ferrier, Michael E. Papka, and
Valerio Pascucci, “LibIS: a lightweight library for flexible in transit
visualization”, in Proceedings of the Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and
Visualization (ISAV ’18), pp. 33–38, doi: 10.1145/3281464.3281466

[8] EPSN Project. [Online]. Available: https://www.labri.fr/projet/epsn/
[9] “Damaris: In Situ Data Analysis and Visualization in Support of

Large-Scale CFD Application” presentation, given by Hadi Salimi at
29th International Conference on Parallel CFD (ParCFD), May
2017.

[10] Hummel M., van Kooten K., “Leveraging NVIDIA Omniverse for In
Situ Visualization”, in High Performance Computing. ISC High
Performance, Weiland M., Juckeland G., Alam S., Jagode H., Eds.
2019. Lecture Notes in Computer Science, vol. 11887. Springer,
Cham.

[11] USD: Universal Scene Description format. [Online]. Available:,
https://graphics.pixar.com/usd/docs/index.html

[12] CinemaScience visual data format. [Online]. Available:
https://cinemascience.org/

[13] Kress, James, Matthew Larsen, Jong Choi, Mark Kim, Matthew
Wolf, Norbert Podhorszki, Scott Klasky, Hank Childs and David
Pugmire, “Comparing the Efficiency of In Situ Visualization
Paradigms at Scale.”, in High Performance Computing. ISC High
Performance, Weiland M., Juckeland G., Trinitis C., Sadayappan P. ,
Eds., 2019, Lecture Notes in Computer Science, vol. 11501. Springer,
Cham.

[14] Conduit: a model for describing hierarchical scientific data. [Online].
Available: https://llnl-conduit.readthedocs.io

[15] J. Ames et al., "Low-Overhead In Situ Visualization Using Halo
Replay," 2019 IEEE 9th Symposium on Large Data Analysis and
Visualization (LDAV), Vancouver, BC, Canada, 2019, pp. 16-26.

[16] Averbukh V.L, Vasev P.A., Gorbashevsy D.Y., Kazantsev A.Y.,
Manakov D.V., “An interactive visualization system for parallel
computing”, in Proceedings of 14-th International Conference on
Computer graphics and Vision GraphiCon’2004, Moscow state
university named after M.V. Lomonosov, pp. 291-294, in Russian.

https://doi.org/10.1007/978-3-030-02465-9_15
https://www.labri.fr/projet/epsn/
https://doi.org/10.1145/3281464.3281466
https://sc19.supercomputing.org/program/tutorials/
https://llnl-conduit.readthedocs.io/
https://cinemascience.org/
https://graphics.pixar.com/usd/docs/index.html
https://ix.cs.uoregon.edu/~hank/insituterminology/

