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Abstract 

First of all the paper considers the problem of verification or formalization of the online 
visualization and parallel computing system from the point of view of dynamic systems as a 
development of the theory of computational complexity for random processes. Considering 
problems involving truly big data inevitably leads to the use of a block approach which is also 
used in both information theory and stochastic differential equations. As a natural metaphor 
the graph signals were chosen. This is a graph in nodes, of which a spectral function is de-
fined in the examples considered this is a function of color (RGB), height or amount of data. 
In parallel computing, a block can be associated with a computing unit (processor) and con-
sider the problem of entropy (performance) maximization. In the developed on-line visualiza-
tion and concurrent computing system for geometric parallelization, it is possible to imple-
ment and compare a stationary random process (equiprobable messages implemented using 
broadcasting and mixins) and a steady-state random process (point-to-point messages), 
which have different analytical solutions. Together, this allows concluding that the proposed 
implementation of a stationary process has a certain novelty; in addition, it was intended to 
be more convenient for automated parallelization. The problems of automatic load balancing 
(interpolation problem) and optimal scalability of parallel computing (extrapolation problem) 
are also considered. Not much has been done in the field of visualization verification for ex-
ample a mesh visualization has been proposed to be considered as a parameterized model of a 
white-noise random process. Of course, this work cannot be considered complete, but the di-
rection that the authors called stochastic semantics is obviously promising.  

The authors intend to take a close look at the established perturbed processes in the field 
of visualizations including those that take into account the human factor (the sketches of the 
formalization in the form of a discussion are given).  

  
Keywords: signal graphs (graph signals), dynamic systems, load balancing, entropy, 

visualization of a digital surface model. 

 

1. Introduction 
There is such a theoretical direction as software verification. Since visualization is techni-

cally also a calculation we would like to have a common mathematical verification model for 
both software and visualization. Visualization verification is a formal (mathematical) proof 
that the visualization is correct. The developed mathematical models should answer the ques-
tion whether we have correctly solved the problem set by the user, evaluate the quality and 
effectiveness of visualization and evaluate the prospects for the development of modern 
trends in the field of visualization. In particular virtual reality (VR), web-based visualization, 
online visualization, big data and parallel computing. 
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For verification, stochastic differential equations (SDE) are chosen as the basic model, as 
the most general solution that takes into account noise, in combination with information the-
ory. This hypothesis is called stochastic semantics.  

The initial model of image processing is the noise reduction model, which has become 
widespread, in particular, due to the proliferation of packages such as “Stable Diffusion“, 
which generate an image from text. Three variants of noise reduction are described [1]: 

1. Denoising Diffusion Probabilistic Models (DDPM). 
2. Noise Conditioned Score Networks (NCSNs). 
3. Stochastic Differential Equations (SDEs). 
As noted, the first two models are a special case of the diffusion process, which can proba-

bly be obtained using the Markov property, which is not enough from the point of view of ver-
ification. In principle, other works on this topic also use an engineering approach, that is, 
they show with examples that the model is working, and validation is performed with insuffi-
cient verification (plausibility is usually used). The most widely used approach is estimated 
networks with conditional noise. In the same paper [1], it is said that it is used to solve the 
transport problem namely to generate a superresolution. This approach is also known as bak-
ing. You can also refer for example to baking normal in Blender. 

In principle, the same approaches are used for speech recognition in this case, the spec-
trum consists of phonemes in terms of visualization the spectrum is RGB. 

We can recommend to study the book [2] on image processing on signal graphs (a special 
case of SDE) with sufficiently transparent mathematics. A signal graph is a network whose 
nodes contain function values. Therefore, you can define differentiation operators in the 
nodes and edges of the graph and proceed to partial differential SDE. Initially, signal graphs 
were used in electrical engineering where the approaches under consideration are a problem 
of automatic control the purpose of which is to construct a transfer function, for example, ac-
cording to Mason's formula. The diffusion method is also used for load balancing [3]. 

At the same time, i would like to see a certain pragmatism in addition to theory, for exam-
ple, the use of modeling to solve specific problems. In this paper, two problems are presented 
one in the field of parallel computing the other in the field of visualization: formalization of a 
dynamic system (DS) of the online visualization and parallel computing on signal graphs, vis-
ualization of grids as a parameterized model of a white-noise random process. 

2. Stochastic semantics 
Let us consider the visualization (interactive process and animation) from the point of view 

of dynamic systems. We define a visual process simultaneously as a parallel process consid-
ered as interacting sequential processes (Hoare’s processes) from the programming point of 
view and as a random process from the point of view of mathematical modeling. A random 
process is a parameterized set (family) of random variables [4]. However, unlike typical SDE 
models two linearly independent parameters are introduced: the amount of data and time 
(two random variables) - 𝜔 = 𝜔𝛺𝑛 × 𝜔𝑡, where × is the Cartesian product or currying depend-
ing on the model. Information theory is needed to move from the product to the sum using 
the additivity property entropy. That is we define a random process as a composition of func-
tions: 

𝑓(𝑡, 𝑁, 𝜔) = 𝑓𝑡(𝑡, 𝜔𝑡) ∘ 𝑓𝑁(𝑁, 𝜔𝑁) 
Moreover, the amount (volume) of data N can be arbitrarily large, for example, it is not in-

cluded in the operational memory of a single processor. 
In general, it is necessary to consider the sum of such compositions, for example, the com-

position for two types of random events such as messaging and reactive computing. We note 
some differences between the general case and the Kolmogorov-Arnold theorem, which states 
that every multidimensional continuous function can be represented as a superposition of 
continuous functions of one variable: 



1. The paper uses a probabilistic approach (random processes are considered) it is prob-
ably possible (it is necessary in the future) to switch from SDE and information theory to 
weak KAM [5] and mean field theory. 

2. The function of many variables is enhanced by the spectral property in fact it is vector 
functions of many variables. 

3. Data filtering is considered as a special case of reactive computing. The order of filter 
execution is important for the filter pipeline. 

4. Unlike the amount of information, the assessment of information quality is subjective. 
An important task is to formally define concepts such as context, quality, cognitiveness and 
perceptivity of information in a way that reduces the level of subjectivity, so that can use SDE 
or weak KAM to solve tasks. In the field of visualization, the solution of the inverse problem is 
often considered (in category theory, the concept of the inverse limit is introduced), for ex-
ample, one can propose such a type of display that it is continuous from the point of view of 
visual perception (perceptual continuity). 

For software verification, as well as for visualization, along with denotational semantics, 
event structures can also be used by SDE. Stochastic semantics can be defined as game se-
mantics with noise, or you can immediately use SDE. Although these two approaches are 
equivalent and the data flow model is considered in relation to programming they result in 
different mathematical models. 

Verification is based on the transition from declarative definitions to formal (verifiable) 
definitions. In [6], the semiotic definition of the visualization metaphor is considered as a 
continuous mapping of the source set to the target set. At the same time, only the continuity 
property is added to the standard definition of a metaphor according to Lakoff [7]. A similar 
and most well-known approach in the field of software verification is  Scott's denotational 
semantics [8]. Because of applying an axiomatic (semiotic) approach to formalization of visu-
alization and parallel data filtering some analog of the stochastic control problem with mor-
phological uncertainty is obtained. The result obtained is more mental (useful for under-
standing the nature of the phenomenon) than mathematical. In this paper, we consider prob-
lems within the framework of a priori uncertainty, namely SDE and information theory.  

Consideration of problems related to really big data inevitably leads to the use of a block 
approach, which is also used in information theory and stochastic differential equations. Big 
data is the extreme (at the moment) case of data processing, in which universal approaches to 
analysis and visualization do not work or are ineffective. Then multidimensional and multi-
categorical data, large-volume data, or data with incomplete information (a model with un-
certainty) can be considered as big data. The limit case forms the challenges that need to be 
answered in order to move on. Solving emerging problems leads to the fact that today's “big 
data” becomes the norm tomorrow [9]. When analyzing and visualizing big data, the consid-
eration of marginal uncertainty it is the uncertainty that has a finite limit in a particular me-
trized topology is forced. Since computable models are being developed, we will explain this 
definition using the example of a computable function, which uses a special element in its 
definition, meaning the uncertainty corresponding to the case when the algorithm hangs. 
Since the process is considered, the algorithm cannot hang it is always interactively resolved 
as a result of debugging the correctness and efficiency of the program. Why hasn't the asymp-
totic theory of algorithms or automata predicted by R. L. Stratonovich been proposed so far? 

3. Parallel computing 
Parallel computing is a generator of more data. In some cases, instead of storing all the da-

ta it is preferable to process it using visual analytics and then decide whether this data is 
needed. As a result, there is a need to implement online visualization. If you need to store da-
ta, then it should be placed not on the client, but in the cloud or on a parallel file system, as a 
result, there is a need to implement remote visualization. Online and remote visualization 
tasks are architecturally very similar, so there should be a single development environment 



for such programs. As already mentioned, visualization is the same as computing so a unified 
online visualization and parallel computing environment is being developed. In [10], the 
main attention is paid to the validation of this environment, including the problem of load 
balancing by means of visual analytics. In this case, we will focus on verification, namely, the 
formalization of a dynamic system of online visualization and parallel computing. The main 
attention is paid to evaluating the efficiency of parallel programs, which takes into account 
the amount of data, namely, the problems of maximizing entropy for block models, where the 
block processor has physical and logical levels. 

Before proceeding to formalization, let's list the main specifications of the online visualiza-
tion and parallel computing environments: 

1. Versatility of the system-online visualization and parallel computing; 
2. Consideration from the point of view of dynamic systems. 
3. Applicability of parametric (parameterized) models, including control via parameters. 

First, visualization is technically a computation (of course, with some special features), so 
we can offer a universal programming method, including a programming language that will 
allow you to effectively implement visualization algorithms, their connection with parallel 
computing programs, and these programs themselves, that is, arbitrary computational algo-
rithms. 

Secondly, this environment is built around the idea of presenting a parallel computing pro-
cess in the form of a set of dependent tasks [11]. Task dependency means that the input ar-
guments for some task are determined by the results of calculating other tasks. The list of 
tasks and dependencies between them is determined by a custom algorithm, which can take 
either the form of a final calculation or a random process. Delays that occur before receiving 
and transmitting data will be considered as noise, which ideally tends to zero. Tasks are sent 
as input to the scheduling process, which determines on which computing node a particular 
task should be performed. Then, as dependencies are resolved, tasks are executed. Naturally, 
the efficiency of the entire parallel computation depends on the quality of the planning algo-
rithm used. The assignment of a task to a node is called an assignment. The set of such as-
signments and dependencies between tasks will be called an execution plan. We emphasize 
that the execution plan is built over time, as tasks and their arguments (data) are received. As 
a result, a load balancing formula was proposed experimentally in [10]. One of the tasks of 
this paper is to show that the formula corresponds to the problem of interpolation on signal 
graphs [2]. For which the function value should be defined in nodes. This function can be 
considered time-dependent, but the real value of the data transfer time can only be obtained 
after a certain step of program execution, i.e. offline, which is unacceptable. Therefore, in this 
case, we consider a function that depends on the amount of data (similar to computational 
complexity). Indeed, the complexity of a parallel algorithm issometimes defined as the ratio 
of the complexity of data transmission to the complexity of a sequential algorithm, for exam-
ple, as 𝑂(𝑁2)/𝑂(𝑁3). Of course, this is a rough expert assessment. The question arises: is it 
possible to refine this estimate, for example, by defining the transfer function in terms of a 
canonical decomposition, for example, Taylor? 

Third, the most important feature of the online visualization and parallel computing envi-
ronment is the ability to control both calculations and visualization through parameters. For 
example, parallel rendering can be organized not as a loop that depends on the camera posi-
tion, but as a reactive calculation. Such approaches not only save memory, but are also in de-
mand for research tasks, in addition, they are formalized using CDS. As an example, we will 
consider visualization of grids as a parameterized model of a white-noise random processor. 
In particular, for visualizing a digital surface model. 

Let's move on to formalizing the dynamic system of online visualization and parallel com-
puting. In addition to the formal description of this automated programming system, as al-
ready noted, we are interested in two tasks: automatic load balancing and evaluating the effi-
ciency of parallel computing, taking into account the amount of data. 



3.1. Formal description of a dynamic online visualization and par-
allel computing system 

Let's consider the construction of a universal algebra, which we will call the process struc-
ture: 𝑃𝔘(ℕ, +,∘, 𝑡{𝜔𝑖}), where ℕ is the set of natural numbers which displays object identifi-
ers, 𝑡{𝜔𝑖} is the logical time that depends on a list of random events. 

We define the goal of automatic load balancing as follows: for any pu process, construct a 
binary homomorphic mapping from the process structure G is a signal graph that maps the 
process to CO-OPN (Concurrent Object-Oriented Petri Nets [12]) with minimal noise (de-
lays): 𝐺: 𝑝𝑢 → 𝐶𝑂 − 𝑂𝑃𝑁 . Further analysis showed that Polish spaces are considered.  

A Polish space is a space that is homeomorphic to a complete metric space with a counta-
bly dense subset. In particular, in the field of visualization, we consider an example for a sep-
arable Banach space. Thus, there is a possibility to switch to weak KAM. 

CO-OPN, a parallel object-oriented Petri net – is one of the most well-known implementa-
tions of the algebraic Petri net. A petri net is a discrete dynamical system (directed bipartite 
graph) specially designed for parallel computing. Since any tree, including a syntax tree can 
be represented as a bipartite directed graph, the homomorphic image of this map G cannot be 
anything other than modifications of Petri nets. The motivation for using signal graphs is to 
obtain an autonomous system of differential equations. A similar approach to the use of sig-
nal graphs is graph-symbolic programming [13]. (You can also cite other examples of graph 
programming automation, for example, information graphs. Probably the list of works on this 
topic is extensive, but the authors focus not on programming, but on formalization, in partic-
ular on the development of computational complexity theory for parallel computations). In 
our opinion, the introduction of the arc type (sequential, parallel, terminating) is superfluous, 
since there is a concept of a graph path. From the point of view of programming automation 
and in order to avoid unnecessary copying of data, and possibly getting into the cache, the 
rule of maximizing the path of the signal graph (task graph) on each processor should be ful-
filled, which can be represented as a function of price. In the Petri net, there is a concept of 
transition, similarly, in graph-symbolic programming, the predicate label is used, and in the 
dynamic system of online visualization and parallel computing, the standard language con-
structs futures (promise) and mixins are implemented at the lower level, but in a parallel ver-
sion. A promise is a predicate that depends on the data type (object parameters). In this case, 
there is a direct analogy with colored functional Petri nets. An impurity is a predicate that de-
pends on the processor number, and therefore depends on the parallelization scheme. In the 
context of big data, impurity implementation is a significant addition to Petri nets. Further, 
we will show that from the point of view of information theory, an effective implementation of 
admixtures should be based on broadcasting and vector routing of streams, in particular on 
message buffering. Some examples of impurities will also be given. 

The logical time determines the order of events. Two types of events are possible in the DS: 
reactive computing and message exchange. Since entropy is additive, from the point of view 
of information theory, these two problems can be considered independently, for example, you 
can enter two logical times. Although the authors are interested in formalizing tasks related 
to messaging, we will focus a little on reactive computing. 

In reactive computing, a random event is a change in the value of a parameter (online or 
offline). By analogy with abstract data types, this approach is called parameter abstraction. 
The simplest implementation of online visualization, but probably not the most effective, is 
offline parameter change. That is, all the data of the current iteration are on the client, while 
the user is engaged in visual analytics, the next iteration can be calculated on the computer. 
In this case, there is no problem with establishing the order of events, so two orthogonal logi-
cal times can be introduced. Formally, the abstraction of parameters can be considered as a 
lambda application and, for example, the apparatus of category theory can be used. Formally, 
parameter abstraction can be considered as a lambda application and can be applied to the 
apparatus of category theory. Although a monad is defined as a functor with an additional 



structure in the context of big data, there are fundamental differences between the two. For 
functors, there is no problem of asymptotic convergence; it is sufficient that the parameters 
are linearly independent or that the multiplicativity property is satisfied (in category theory 
the term currying is used). For monads, convergence can be considered if a repeated integral 
through a multiple integral is defined, for example, for lattices, space – filling curves, tessella-
tions, random graphs, otherwise reducing a syntax tree or graph of tasks is a discrete optimi-
zation problem on graphs. In fact, in DS, a promise is a monad. Thus, the structure of pro-
cesses is not just a construction of a universal algebra, but an algebraic system. a signature is 
a set of functional and predicate symbols with their arities. 

Problems related to the exchange of messages will be considered from the position of a 
priori uncertainty, although the authors assume the answer. So evaluating the effectiveness of 
parallel computing - This is an inhomogeneous Markov control problem, where the right-
hand side of the equation is equal to the number of blocks (processors) in the block model. 
Therefore, the problem of automatic load balancing (scheduling algorithm) corresponds to 
the problem of interpolation on signal graphs. A scheduling algorithm is an algorithm that 
selects which executor should perform a particular task. Since the amount of RAM on differ-
ent classes of processors is different (and perhaps заранее и not known in advance), the 
transport problem can be considered as a solution, for example, with a variable number of 
outputs. It seems that there is a solution to this statement, like the problem of automatic con-
trol, it is constructing a transfer function using the Hurwitz polynomial, but the DS uses a dif-
ferent approach: if there is not enough memory, the task is transferred to another executor as 
a result, load unbalancing is possible.  For the purpose of generalizing modeling we will refer 
to the executor as a processor. 

3.2. Automatic load balancing task 
Let's consider the problem of interpolation on signal graphs.  To get started in the visuali-

zation area, see Figure 1. 
Let be a function𝑓0: 𝒱0 → ℝ , where 𝒱0 ⊂ 𝒱 is a subset of the vertices of the graph with 

known values. The interpolation problem is reduced to considering the equation: ∆𝑓(𝑣𝑖) = 0 
on 𝒱\𝒱0. In the original source [2], the Laplacian is defined in a specific way for isotropic and 
anisotropic diffusion processes (in fact, the Nabla operator is redefined), which is not essen-
tial for further reasoning. Simple examples of parallelization such as isotropic diffusion pro-
cesses are considered in this paper. The authors believe that such examples of parallelization 
as discrete optimization problems on graphs and the solution of system of linear algebraic 
equations by the Cholesky method are anisotropic diffusion processes. 

 

 
Figure 1: Interpolation scheme [2] 

 
The algorithm is designed to dynamically distribute the task graph among processors, so 

that they are not idle. For the problem [14] of parallelizing a one-dimensional array on a line 
of processors with a shadow face of one width, that is at each iteration step the function was 
calculated 𝑓(𝑚𝑢[𝑖 − 1], 𝑚𝑢[𝑖], 𝑚𝑢[𝑖 + 1], 𝜎), 𝜎 is the average value of the function at the previ-



ous step. Experimentally, in combination with visual analytics, the following load balancing 
formula was obtained [10]: 

𝐸𝑖 = |𝒱𝑖\𝒱𝑖
0| + 𝑘 𝑙𝑛(𝑞𝑢𝑒𝑢𝑒𝑖), 

where the mathematical expectation of the processor load is the lowest value of the processor 

load 𝐸𝑖 (the next task is assigned to the executor with the lowest value 𝐸𝑖), |𝒱𝑖\𝒱𝑖
0| is the num-

ber of task arguments, missing from the executor cache, 𝑞𝑢𝑒𝑢𝑒𝑖 is the current size of the list of 
assigned and still unresolved tasks (message queues). The computational complexity of pyr-
amid (optimal) queue processing has a logarithmic relationship. One of the problems was the 
selection of the coefficient 𝑘 = 0.1. It can be assumed that it is a characteristic of the parallel-
ization architecture and is equal to the ratio of the (physical) channel bandwidth to the pro-
cessor's computing speed. 

To get to the general case, let's consider another scheme of geometric parallelization: a uni-
form distribution of data (a two-dimensional array) across processors is given, 𝑁 × 𝑁 is the 
amount of data on each processor, 𝑁 is a variable parameter, 𝑓𝑖 = 𝑁2 ,  ∇𝑓𝑖=2N . The interpo-
lation problem for load balancing is written as follows: 

∇𝐸𝑖 = ∇|2𝑁(𝒱𝑖\𝒱𝑖
0)| + ∇𝑘𝑙𝑛(𝑞𝑢𝑒𝑢𝑒𝑖) = 0. 

Obviously, for the example under consideration, 2n is the length of the message. In ac-
cordance with the Markov property of diffusion processes [4] lim

𝑖→∞
∇𝑘𝑙𝑛(𝑞𝑢𝑒𝑢𝑒𝑖) = 0 (white 

noise is considered, the general name is the Poisson problem, and the other term corresponds 
to the Dirichlet problem). 

A stochastic process has the Markov property if the conditional probability distribution of 
future states of the process depends only on the current state, and not on the sequence of 
events that preceded it. 

Instead of a mathematical formulation of the Markov property, a reference to the following 
example is sufficient. 

Example 7.3.4. Brownian n-dimensional motion is, of course, the solution of a stochastic 
differential equation: 𝑑𝑋𝑡 = 𝑑𝐵𝑡. 

Thus, the generating operator 𝐴 of the process 𝐵𝑡 (Brownian n-dimensional motion) has 
the form: 

𝐴𝑓 =
1

2
Δ𝑓. 

For the general case, the following load balancing formula is quite plausible:  

𝐸𝑖 = |𝑑 ∗ ∇𝑓𝑖(𝒱𝑖\𝒱𝑖
0)| + 𝑘𝑙𝑛(𝑞𝑢𝑒𝑢𝑒𝑖), 

where 𝑑 is the width of the shadow face, 𝒱𝑖\𝒱𝑖
0  is the number of expected messages, not the 

number of task arguments that are missing from the executor's cache, since message buffer-
ing must be used for optimization purposes. 

The current direction in programming is vector flow routing. We will briefly focus only on 
message buffering. In practice, you need to consider the average message length in the num-
ber of buffers (the useful buffer size is a constant). Obviously, buffering short messages signif-
icantly increases the speed of exchanges, and for long messages it is no worse, therefore, for 
messages of arbitrary length, it is also advantageous to use buffering. Since synchronization 
commands are characterized by high latency of short messages, and buffering is not always 
possible, there is a desire to abandon synchronization, and nondeterministic messages will be 
considered further. 

Although the load balancing formula looks quite plausible from the point of view of an ex-
pert programmer, the authors promised to consider the tasks set within the framework of a 
priori uncertainty, namely, SDE and information theory. 

3.3. Information theories and the messaging model 
With any formalization, a certain idealization is inevitable. Although the authors focus on 

the messaging model, this model is also applicable for other parallel architectures: for shared 
memory and accelerators, with minor additions. Modeling is based on the application of R. L. 



Stratonovich's monograph: "Information Theory" [15], which fundamentally rejected the use 
of special terms of information theory in order to generalize it and thermodynamics. The au-
thors, on the contrary, intend to explain some formulas in terms of information theory and 
CDE. R. L .Stratonovich considered the encoding (transmission) of information, the authors 
consider the transmission (exchange) of messages, which is basically the same thing. 

The maximum value of entropy is called the bandwidth (information capacity) of a channel 
(computer, parallel program) without interference. Consider the problem of maximizing en-
tropy (performance) while maximizing the path of a signal graph on each processor, which, 
indeed, resembles the formulation of the transport problem of fractional-linear program-
ming: maximizing matchings while maximizing flow. 

Without prejudice to the theory, the concept of “messages” can be replaced by the concept 
of “random variable", the concept of” “message sequence” by ”random process". So the 
amount of information in the context of probability theory is represented as the average en-
tropy: 

𝐼 = 𝐻𝜉 = − ∑ 𝑃(𝜉)𝑙𝑛𝑃(𝜉)𝜉 , 

where 𝜉 is a discrete random variable, and 𝑃(𝜉) is its probability distribution. 
This formula is a consequence (in an asymptotic senseсле) of the Hartley formula, for non-

probable events, which is represented as a random entropy (that is, entropy is a random vari-
able) as: 

𝐻(𝜉) = −𝑙𝑛𝑃(𝜉), 
with the normalization condition:  ∑ 𝑃(𝜉) = 1𝜉 . 

Naturally, the average entropy is the average value of random entropies: 
𝐻𝜉 = 𝑀𝐻(𝜉). 

The authors would prefer to present information theory immediately in terms of SDE. So, 
in the case of a continuous random variable, is it possible to use the Ito integral instead of the 
sum, since it is known that the differential entropy is unlimitedн? And the solution is also 
known: we must consider the normalized entropy, which in the context of fuzzy sets is called 
improbability entropy, or: we must consider the Radon-Nikodim derivative. 

When defining the structure of processes, the property of additivity of entropy was men-
tioned earlier. 

Theorem 1.3. If the random variables 𝜉1, 𝜉2 are independent, then the total (joint) entropy 
𝐻𝜉1,𝜉2

 decomposes into the sum of the entropies: 

𝐻𝜉1,𝜉2
= 𝐻𝜉1, + 𝐻𝜉2

. 

Theorem 1.4. Entropy has the property of hierarchical additivity: 
𝐻𝜉1,...,𝜉𝑛

= 𝐻𝜉1
+ 𝐻𝜉2|𝜉1

+. . . +𝐻𝜉𝑛|𝜉1,...,𝜉𝑛−1
, 

where 𝐻𝜉2|𝜉1
 – conditional entropy. 

This property is used in practical terms when implementing mixins. Consider a problem 
for which we need to calculate the mathematical expectation 𝑀𝑓𝑖, where 𝑓𝑖 is the average val-
ue of the function on the 𝑖-processor. Based on the sequential option, in order to increase effi-
ciency, we can offer pairwise pyramid summation, but in this case the messages will be point-
to-point, that is, non-probable, and the channel is not symmetrical. Perhaps for a small num-
ber of processors, this option will be more efficient than the implementation taking into ac-
count the hierarchical additivity property: Using broadcasting, summation should be per-
formed on each processor, while the selection tree on each processor will be different, but the 
conditional entropy on each processor will still tend to zero. This parallelization scheme is 
similar to the master-worker scheme without synchronization, for which each processor is 
both a master and a worker. 

To implement a selection tree, each processor must have at least two (physical) bidirec-
tional communication channels, where k is the number of processor channels similar to the 
number of letters of the alphabet (for a multi – core architecture, k is the number of cores, 
but the selection tree is directed in the other direction, similar to pyramid summation). In 
addition, there is a not entirely correct opinion that the result of summation depends on the 



order of summation. In the case of entropy stability, all implementations of summation will 
be approximately equal. 

Amdahl's law illustrates the limitation of the performance growth of a computer system 
with an increase in the number of computers (processors), which is formulated as a well-
studied Bernoulli distribution. That is, Amdahl's law is a special case from the point of view of 
information theory and does not take into account the exchange of messages. Due to the 
property of additivity of entropy, these two problems can be considered independently. In 
addition, for geometric parallelization with a fixed amount of data, the share of sequential 
calculations is inversely proportional to the number of processors, that is, it tends to zero 
with the number of processors tending to infinity, therefore, when evaluating performance, 
only the exchange of messages should be taken into account. When considering the general 
case, we need not only the equality of processors, but also the equal probability of messages 
(asynchronous non-deterministic messages, stationary process by the number of processors). 
Since the cluster architecture is most widely used, in which exchanges are carried out via a 
common bus (we can also consider a k-tree), such an idealization is justified, in addition, the 
channels are two-way, so we can assume that the path length for asynchronous messages is 
one, and for synchronized exchanges it is two. The path length is a constant that depends on 
the message type and the architecture of the computer, which must be multiplied by the aver-
age message length. 

In fact, equal probability of messages is not required. You can consider deterministic mes-
sages (a steady-state process), for example, the data grid on the processor grid, but this is a 
rather narrow class of problems. anisotropic diffusion processes and multiple integrals are 
considered as an extension of the class of problems. 

The concept of entropic stability of a family of random variables helps to give a general 
formulation of the property of asymptotic equivalence of non-equiprobable possibilities 
(messages) to equally probable ones. 

A family of random variables {𝜂𝑛} is entropically stable if the ratio 𝐻(𝜂𝑛)/𝐻𝜂𝑛  при 𝑛 → ∞ 

converges to unity in probability. This means that whatever they may be 𝜀 > 0, 𝑛 > 0  there 
is 𝑁(𝜀, 𝜂)  such that the inequality holds: 

𝑃{| 𝐻(𝜂𝑛) 𝐻𝜂𝑛⁄ − 1| ≥ 𝜀} ⋖ 𝜂  , 

for any 𝑛 > 𝑁(𝜀, 𝜂). 
The definition implies that all 0 < 𝐻𝜂𝑛 < ∞ and 𝐻𝜂𝑛 does not decrease with increasing 𝑛. 

Usually 𝐻𝑛𝑛 → ∞. 
The fact of asymptotic equiprobability can be formulated using the concept of entropic sta-

bility in the form of the following theorem. 
Theorem 1.9. If a family of random variables {𝜂𝑛}  is entropically stable, then the set of re-

alizations of each random variable can be divided into two subsets 𝐴𝑛 and 𝐵𝑛 in such a way 
that 

1. The total probability of the subset 𝐴𝑛 vanishes: 
𝑃(𝐴𝑛) → 0 for 𝑛 → ∞. 

2. Realizations of the second subset 𝐵𝑛 become relatively equiprobable in the sense of the 
relation 

|
𝑙𝑛𝑃(𝜂)−𝑖𝑛𝑃(𝜂′)

𝑙𝑛𝑃(𝜂)
| → 0  

for 𝑛 → ∞, 𝜂 ∈ 𝐵𝑛, 𝜂′ ∈ 𝐵𝑛. 
3. The number 𝑀𝑛 of realizations of the set 𝐵𝑛 is related to the entropy 𝐻𝜂𝑛 nn by the rela-

tion 
𝑙𝑛𝑀𝑛 𝐻𝑛𝑛⁄ → 1 for 𝑛 → ∞. 

Here are some comments on entropic stability. From the point of view of SDE, the defini-
tion of entropic stability can be considered as a generalization of the Ito integral through the 
probability limit: The ratio 𝐻(𝜂𝑛) 𝐻𝜂𝑛⁄  is the relative entropy or Kullback-Leibler distance for 

a uniform distribution. In this case, the notation 𝐻𝜉
𝑃/𝑄

 . 



In information theory, the main focus is on current coding but another approach, which 
can be called block-based, is also considered. In this case, the final set (block) of elementary 
messages must be encoded. If the block is an entropy-stable value, then the probability of los-
ing some of the message implementations is quite small. As already noted, instead of encod-
ing messages, you can consider message transmission, and the maximum value of entropy is 
called the bandwidth of the channel without interference. Let us consider the problem of 
maximizing entropy in the case of the block approach. As a comment, we note that this prob-
lemтна задаче is equivalent to the Kullback-Leibler distance minimization problem Кульба-
ка-Лейблера, also called the maximum likelihood problem. In our interpretation, a block is a 
processor that must be entropically stable, that is, a PROCESSOR=MARKOV PROCESS, tak-
ing into account hardware and software implementations, as well as the entire computer.  If 
we consider the problem of fault tolerance for a Markov process, then one additional proces-
sor is sufficient for its implementation (the average probability of failure of one processor is 
very small), and events associated with replacing one processor with another do not affect the 
performance of calculations (without taking into account data saving and recovery). 

The part of the task that is implemented on the processor (block) must be a Markov pro-
cess. 

Here are some examples of block Markov processes. 
The authors constantly refer to geometric parallelization, since in this case the interpreta-

tion is quite clear. The data located in the block is an open set, since there are shadow faces. 
The total measure on the boundary of the set must be less than the measure of the interior of 
the set. In fact, this is a variant of the Chebyshev inequality, which is actively used in proving 
theorems. 

In principle, we can consider a graph (of tasks on the processor) of a rather arbitrary struc-
ture. Without diminishing generality, we can consider the Radon-Nikodim derivative by in-
troducing two measures, and, consequently, a random process: 

𝐸 ≤ 𝑋 →
1

𝑋
≤

1

𝐸(𝑋)
≪ 1, 

where X is a measure defined in the nodes of the graph and depends on their number, and E 
is a measure defined on the arcs or border of the graph. 

These relations are also valid for signal graphs, for example, the number of nearest neigh-
boring vertices.  It is also applicable in other areas of knowledge, for example, for graph visu-
alization, in particular, knowledge anthologies. “For a hypergraph h with a given set of nodes 
𝑋, a given set of edges 𝐸, and a set of corresponding values of the incidence matrix {𝑎}, the 
information 𝐼(h) has the following form [16]:” 

𝐼(ℎ) =
1

|𝑋|
𝑙𝑜𝑔|{𝑎}||𝐸|. 

Although the incidence matrix is used to reduce graphs, including Petri nets, in the authors 
'opinion, the use of the determinant of the incidence matrix in the base of the logarithm is not 
justified. 

Let us describe the Kullback-Leibler distance minimization problem: 

lim
𝑋→∞

𝐷𝐾𝐿 (
1
𝑋 |

1
𝐸(𝑋)

) = ∑ 𝑙𝑖𝑚
𝑋→∞

1

𝑋
ln (

𝐸(𝑋)

𝑋
)

= ∑ 𝑙𝑖𝑚
𝑋→∞

1

𝑋
𝑙𝑛(𝐸(𝑋)) − ∑ 𝑙𝑖𝑚

𝑋→∞

1

𝑋
𝑙𝑛(𝑋) = ∑(𝐼(ℎ) − 0) 

In fact, I(h) is the relative entropy, and the conditional entropy tends to zero. 
A well-known example is the case when the choice tree is bounded from above by a k-tree, 

which in information theory is called optimal encoding of decipherable Kraft codes. 
Theorem 2.3. It is possible to specify such a method of encoding (transmitting) equidis-

tributed independent messages that 

𝑙𝑐𝑝 <
𝐻𝜉

𝑙𝑛𝐷
+ 1. 

In our interpretation, 𝑙𝑐𝑝 is the average path length between computer nodes, and D is the 

number of processor channels (in the original, the number of letters in the alphabet). In the 



case of message exchange via a shared bus, we can assume that 𝐷 = ∞, therefore, the average 
path length betweenthe computer nodes is equal to one, which corresponds to the expert ap-
proach. In the case of the block approach, the following theorem applies. 

Theorem 2.4. There are ways to encode an infinite message such that the average length of 
an elementary message can be made arbitrarily close to 

𝐻𝜉

 𝑙𝑛𝐷
. 

Such estimates for the average path length are applicable not only for the hardware archi-
tecture of the computer, but also at the logical level for graphs in the space - 𝑅𝐷. Useful refer-
ences are out-of-core algorithms (k-tree data restructuring) [17] and “Polynomial approxi-
mate scheme for the problem of cyclic covering of a graph of fixed size k in a Euclidean space 
of arbitrary fixed dimension” (discrete optimization) [18]. 

Since the processor does not exchange messages with itself, you can introduce the concept 
of subentropy, for example, for equally probable messages, similar to the definition of subfac-
torial. Subfactorial !n is defined as the number of disorders of order n, that is, permutations 
of an n-element set without fixed points.  In the case of asymptotic convergence, the equi-
probability of messages is not mandatory, as is the consideration of subentropy. In [19], it is 
shown that in classical information theory, the subentropy dual of the von Neumann suben-
tropy, defined through permutations of the pairwise eigenvalue difference, is an exact lower 
bound on the channel throughput and its calculation corresponds to the Kullback-Leibler dis-
tance minimization problem. 

Depending on the task, the message length between different processors may not be the 
same. In this case, the main characteristic is the average message length. Let us consider a 
direct method for calculating the maximum entropy for this example, which corresponds to 
section 3.1. Let there 𝑚 processors - 𝑉1, … , 𝑉𝑚 that transmit messages of length 𝑙(1), … , 𝑙(𝑚) 
respectively. The total message length will be 𝐿 = 𝑙(1) + ⋯ + 𝑙(𝑚) = 𝑙ср𝑚. We fix this length 

and count the number 𝑀(𝐿) of different implementations of this length. Maximum infor-
mation is obtained when all of the 𝑀(𝐿) possibilities are equally probable. At the same time 

𝐻𝐿

𝐿
=

𝑙𝑛𝑀(𝐿)

𝐿
. 

Taking the limit for 𝐿 → ∞ we obtain the entropy calculated per unit length. That is, it suf-
fices to consider the solution in the case of asymptotic convergence of a linear homogeneous 

equation which has the form - 𝑀(𝐿) = 𝐶𝑒𝜆𝐿. The solution has a unique root with maximal real 
part 𝜆𝑚. Andso, the number of different implementations of length 𝐿 has the form: 

𝑀(𝐿) ≈ 𝐶𝑚𝑒𝜆𝑚𝐿. 
The same result can be obtained from solving the first variational problem. We restrict 

ourselves to only considering a discrete channel without interference (a general statement of 
the problem). The system [𝑌, 𝑐(𝑦), 𝛼] completely characterizes the discrete channel without 
interference where 𝑦 ∈ 𝑌, the penalty function is 𝑐(𝑦) ≤ 𝛼 (microcanonical distribution). In 
particular,  𝑐(𝑦) ≤ 𝐿. It is more convenient to consider the canonical distribution - 
∑ 𝑐(𝑦)𝑃(𝑦) ≤ 𝛼. The bandwidth C or information capacity of the channel [ 𝑌, 𝑐(𝑦), 𝛼] is de-
fined as the maximum value of entropy - 𝐶 = sup

𝑃(𝑦)
𝐻𝑦. Thus, the channel capacity is defined as 

the solution of variational problemsand. Note that it is equivalent to the problem of minimiz-
ing risks (time delays). The equivalence of the microcanonical and canonical distributions is 
proved. In the context of this paper, Amdahl's law is a microcanonical distribution, and the 
corresponding canonical distribution is the Bernoulli distribution. We also emphasize that 
the problem of maximizing the performance (entropy) of parallel computing is considered. 

To illustrate the importance of the average message length, here is an example of the per-
formance behavior of a parallel program with a fixed amount of data and a variable number 
of processors. As the number of processors increases, the average message length in the 
number of buffers may decrease by one and as a result of the exponential dependence on the 
message length, there should be a jump in performance. Thus, the message length may de-



pend, as well as the percentage of consecutive computations, on the number of processors (a 
variable parameter essentially similar to time). Therefore, we need to consider the solution of 
a linear inhomogeneous equation, and first write out the penalty function. 

3.4. Optimal scalability of parallel computing (block approach) 

In the context of high-performance computing, there are two indicators of scalability: 
1. Strong scalability-shows how the time to solve a problem changes with an increase in 

the number of processors (or computing nodes) while the total task volume remains un-
changed. 

2. Weak scalability-shows how the time to solve a problem changes with an increase in 
the number of processors (nodes) while the task size for one processor (or node) remains un-
changed. 

Optimal scalability (an estimate of parallel computing performance that takes into account 
both the amount of data and the number of processors) is a non-uniform Markov control 
problem, where the right-hand side of the equation is equal to the number of blocks (proces-
sors) in the block model. Of course, this is another plausible hypothesis. 

By optimal scalability, we will understand the case when the channel throughput is defined 
as the solution of a variational problem, that is, the entropy can be written out explicitly. 
First, you need to define the penalty function (for a discrete channel), which depends on two 
parameters: the amount of data and the number of processors – p: 

𝑐(𝑁, 𝑝) = 𝑠 ∑ 𝑙𝑖(𝑁, 𝑝) + ∑ 𝛼𝑖(𝑁, 𝑝)𝑝
𝑖=1

𝑝
𝑖=1 , 

where 𝛼𝑖 is the share of consecutive calculations of the total processor,  𝑠 is the average path 
length (recall that for equally probable messages, it is equal to one). In addition, the use of 
signal graphs was previously assumed as a development of ideas of computational complexity 
that is -  𝑙𝑖(𝑁, 𝑝) = ∇𝑓𝑖(𝑁, 𝑝), which will lead to the consideration of the second variational 
problem.  

Next, we will try to find a similar penalty function in information theory. To quote para-
graph 3.5 the potential method for a large number of parameters: "The penalty function de-
pends on a numerical parameter and is differentiable with respect to this parameter.” In our 
case, by the number of processors (blocks) is - p. The authors do not see much point in re-
writing the known formulas in other notations. However, here is one definition. Function - 

𝐵(𝑁) = −
𝜕𝑐(𝑁, 𝑝)

𝜕𝑝
 

is called a random internal (endogenous) thermodynamic parameter conjugated with the ex-
ternal (exogenous) parameter p. Later in the same section, we consider an example with two 
random variables, in our case, the message length and the proportion of consecutive calcula-
tions that are obtained from solving a system of two equations with two unknowns. Thus, the 
analytical solution of the problem under consideration is known. 

The analytical solution can be used to determine interference in the computer. Conse-
quently, there is a need to develop adequate models for processing statistical data on the per-
formance of parallel computing, including for the following task. So far, only stationary pro-
cesses have been considered. Using mixins, a stationary process can be implemented in the 
DS for the task graph with some overhead costs relative to the share of sequential calculations 
(obviously, the Chebyshev inequality must be fulfilled, that is the more data in a block, the 
lower the share of overhead costs, probably we should consider the channel with interference 
(paragraph 7)) and reading messages (recall that the message queue size tends to infinity, 
which corresponds to white noise). In the case of geometric parallelization, you can imple-
ment and compare a stationary process and a steady-state process (point-to-point messages). 
An analytical solution for the latter is also known in information theory (although the term 
steady-state process is not used and parallel computing has not been considered). To do this, 
we introduce the concept of communication information (in our case, graph arcs), naturally, 
through a conditional probability, through it A symmetric channel is also defined, naturally, 



using permutations, respectively paragraphs 6 and 8. In this case, the conditional distribution 
at the channel output for a fixed input signal is assumed to be known (in fact, the transfer 
function is constructed). 

The channel capacity [𝑃(𝑦|𝑥), 𝑐(𝑥)] is the maximum value of the communication infor-
mation between the input and output: 

С = 𝐶[𝑃(𝑦|𝑥), 𝑐(𝑥)] = sup
𝑃(𝑥)

𝐼𝑥𝑖,𝑗. 

In the case of a fully symmetric channel (processor grid), the formula looks quite simple 
(8.4.9): 

С = 𝑙𝑛𝑀 1
𝑝𝑗

⁄ − 𝑀𝑙𝑛 1
𝑝𝑗

⁄ . 

In the case of a uniform distribution, the formula has the following form: 

𝐶 = 𝑙𝑛𝑀
𝑄(𝑑𝑦)

𝑃(𝑑𝑦)
− 𝑀𝑙𝑛

𝑄(𝑑𝑦)

𝑃(𝑑𝑦)
., 

where 𝑄(𝑑𝑦) is an auxiliary measure based on which the intervals are rearranged. 
However, this formula is performed only on the core (in the core) or in the case of shared 

memory, since in the cases considered [14], the penalty function depends on one variable. For 
geometric parallelization, you can reduce the dependencies to a single variable, taking into 
account that for a fixed amount of data, the share of sequential calculations is inversely pro-
portional to the number of processors, that is, it tends to zero (but not zero) with the number 
of processors tending to infinity. The more data on the processor, the better the balance of 
calculations, which leads to a certain contradiction. 

In practical terms, it is more important to follow certain programming rules when develop-
ing parallel programs, starting with a binary homomorphic map and ending with a steady-
state process. If the graph of strong scalability corresponds to a logarithmic function, then the 
parallel program can be considered a steady-state process in terms of the number of blocks (if 
strictly, then we should consider the linear filtering problem [4]: systems with noise and 
measurements with noise). In order to increase productivity, we can consider the following 
extrapolation problem [6] (prediction [4]) up to the point of stopping: 𝑁(𝑝 − 1) is known, we 
need to find N(p) while maximizing entropy, which the authors just call the inhomogeneous 
Markov control problem. Since the general solution of an inhomogeneous equation is the sum 
of the fundamental system of solutions and the partial solution, consideration of an inhomo-
geneous problem automatically leads to an increase in entropy and reduces the dimension of 
the system of homogeneous equations (in our case, to one). An inhomogeneous problem can 
be obtained from random time replacement in [6], the entropy function 𝑝 𝑁(𝑝) ⁄ or fractional 
linearization on the kernel was considered) 𝐿 = 𝑙𝑐𝑝𝑝 differentiating by the average message 

length. At the boundary, the condition corresponding to linear acceleration (maximization of 

entropy) must be satisfied - 𝑋̇ = 𝑝. 
Since statistical data are processed, we need to switch to Markov chains (solving a linear 

system of algebraic equations), which will be the best approximation of the problem of max-
imizing the efficiency of parallel calculations of the message exchange model - 𝐻𝑝𝑋 = 𝑝, 

where 𝐻𝑝 is the message exchange matrix (adjacency matrix). The main diagonal shows the 

average time of sequential block calculations while the other elements correspond to the av-
erage message transfer time between processors, it is assumed that the parallelization scheme 
does not change (does not depend on the iteration number). 

The message exchange matrix will be close to symmetric, since a response message of the 
same length should presumably take a little longer. In such cases, we consider a Dirichlet 
problem with stochastic control of the form regulator with incomplete information about the 
state of the system, let's call it a stochastic information management problem. But on the oth-
er hand, this matrix will have a different symmetry associated with the load balanced calcula-
tions, a parallelization scheme, and the definition of a symmetric channel. 

We can assume that the eigenvalues are responsible for the method of parallelization. It is 
important that the result is a matrix of certain templates, so for the master-worker scheme, 



the main diagonal and 𝑖-row and i-column are not zero (𝑖 is the number of the processor on 
which the master is located). A three-diagonal matrix is obtained for the pipeline or processor 
line, a five-diagonal matrix is obtained for the grid and so on. 

Let's take a closer look at the master-worker scheme. The adjacency matrix has the follow-
ing form: 

𝐻𝑝 = |

𝑎 𝑏
𝑏 𝑎

… 𝑏
 0

⋮  
𝑏 0

⋱  
… 𝑎

|

1
2
⋮
𝑝

  . 

The system is not compatible only when 𝑎1,1 = 0, time without taking into account data 

preparation and saving, i.e. the master does not do the calculation. From the last equation it 
is easy to find 𝑥𝑝  

𝑑𝑥 ≈ 𝑥𝑝 =
𝑝−𝑏𝑥1

𝑎
. 

In the space 𝐿2 the entropy increment (the shift coefficient in the diffusion process) is 

𝑑𝑥 = 𝑋𝑝 − 𝑋𝑝−1 ≈ 𝑥𝑝. 

Taking into account the computational complexity of the algorithm 𝑎 = 𝑓(𝑁) (diffusion co-
efficient) and 𝑏 = ∇𝑓(𝑁), for example, 𝑓(𝑁) = 𝑁3 and load balancing by the number of pro-
cessors the entropy increment has the form: 

𝑑𝑥 = (
𝑃

𝑁
)

3

𝑝 − 𝑂 (
1

𝑁
) →  𝑑𝑥 ≈

𝑝4

𝑁3. 

It turns out that the more complex the algorithm, the better it parallelizes (scales). If we 

put 
𝑝4

𝑁3 = 1 (the maximum entropy value is one), we get the expression N in terms of p. Of 

course, the above estimate is rough, but we can consider a parameterized model of a white-
noise random process, since the entropy function is always 𝑝 𝑁(𝑝)  ≪ 1⁄  (for more infor-
mation, see the section on visualization). This function is a harmonic function (a property of 
the mean), therefore, the consideration of the moving boundary problem is justified, which is 
called the Jacobi problem in SDE [4]. 

To prove that the penalty function is written correctly, we can compare the graphs of the 
Dirichlet beta distribution function and the efficiency of parallel calculations for the problem 
of solving system of linear algebraic equations by the Cholesky method [20] in the case of 
balanced calculations, see Figure 2. 

Let’s 𝑋 = (𝑋1, … , 𝑋𝐾)~𝐷𝑖𝑟(𝑎) is Dirichlet distribution and 𝑎0 = ∑ 𝑎𝑖
𝐾
𝑖=1  then 𝐸[𝑋𝑖|𝑎] =

𝑎𝑖

 𝑎0
. 

 

 
Figure 2: On the left, there is Beta function, on the right, there is efficiency of parallel  

computing 
 
From the point of view of visual verification, the graphs are similar. 



4. Examples of applying the block approach in other areas 
of knowledge 

The block approach in SDE is used quite often, for example, in the global model of earth 
seismicity [21], but the number of blocks is fixed (for example, the number of lithospheric 
plates). Unfortunately, the authors could not find any examples where the number of blocks 
is a variable parameter. And this problem is relevant, not only for the problem of predicting 
the performance of parallel computing, but also for other extrapolation problems (in the gen-
eral case, stochastic information management problems), which are given below. 

Let us consider a similar example from the field of economics-the analysis of data from the 
Accounting Chamber. A matrix of deliveries by (mobile) region numbers is generated (Figure 
3) and a harmonic function is defined the ratio of the sum of deliveries in the region to the 
number of firms in the region, its value between regions is displayed as spheres in the corre-
sponding matrix elements. We can see that by rearranging rows from this matrix, you can get 
a matrix close to symmetric, taking into account the fact that they always order more than 
necessary (the exact upper bound is determined). Although the role of the regulator is im-
portant in the economy, it is also related to the rate of profit and the level of corruption, let's 
just consider whether the information gap between Moscow and other regions is narrowing. 
We define the information gap measure as the ratio of multidimensional distance to geo-
graphical distance, which is an auxiliary measure in the Radon-Nikodim derivative). If we 
consider the ratio of information gaps in the extrapolation problem, the auxiliary measure 
will be reduced. If the ratio measure increases, the information gap will shrink and vice versa. 
Now let's look at the same problem when a new region is added. Us it has already been con-
sidered, the number of blocks (regions) is a variable parameter.  Typical clustering problems 
can also be considered, but from the point of view of dissipative systems – the formation of 
new clusters. The same model is used to analyze the distribution of information in Internet 
networks, where the parameter is not the number of regions, but the number of information 
channels (blogs, etc.). 

 

 
Figure 3: Delivery matrix by region 

 
Next, we will look at some examples of stochastic visual information management prob-

lems, focusing on the application of the block approach in visualization. 

5. Stochastic management of visual information 
Sinkhorn (Sinkhorn neural networks based on the Sinkhorn theorem [22] are used to solve 

a wide class of transport problems; super-resolution, comparison of two distributions. It is 
argued that these networks are better in terms of speed and number of parameters than gen-
erative maximum likelihood networks. Next, we will consider the possibility of using SDS for 
problems on (signal) graphs as an alternative to the traditional use of neural networks. For 
parallel calculations, the function defined on the signal graphs depended on the amount of 



data in this section height dependence (height map). First, we will consider the task of visual-
izing a digital surface model (DSM) with a fixed number of blocks and a variable amount of 
data in each block. For this task, the maximum number of blocks depends on the amount of 
data that is limited by the video card's memory, i.e. it is a constant. In the sequel, we will con-
sider the task of recognizing gestures of infants on one block as a comparison of two distribu-
tions (video streams) of a healthy infant and possibly with deviations in the future. In princi-
ple, for speech recognition tasks, the number of blocks can be a variable parameter, not a 
constant. In the future, the goal is to solve the problem of object detection as a composition of 
these two problems (these two random processes) with different types of heterogeneity: the 
number of blocks and the height. 

5.1. Visualization of grids as a parameterized model of a white-
noise random process 

A block is a DSM data storage element (similar to the recognition problem), a matrix of 
size NxN, at each point of which the height function above sea level and a constant colorе, 
code corresponding to the object class, то are defined, i.e. a signal graph on the grid is de-
fined. The DSM is represented by a set of such matrices or a block matrix. At the same time, 
the block has a hierarchical structure that is a quad-tree, which reflects different levels of de-
tail in terms of accuracy. The main specification of visualization is its application in VR 
(three-dimensional graphics), that is, in a Banach space (not points are displayed, but inter-
vals) and because of this "joints" or "holes" are formed between blocks, which cause difficul-
ties in implementing rendering algorithms. They must handle block boundaries in a special 
way. In Gilbert space (for raster graphics), there are no such problems. The main difference 
between the three-dimensional graphical approach and the standard one used in SDE is that 
the limit of the step function should be defined not in the pointwise convergence topology, 
but in a compact-open topology, which is done in order to build a continuous display (visuali-
zation) from the point of view of visual perception. 

When flying around the DSM, blocks are loaded taking into account the function of the 
minimum distance between the camera and the block, first with the worst accuracy, and then 
with improved accuracy. The visualization application is implemented using Web-GL, with 
shader abstraction implemented, which is similar to parameter abstraction, i.e. a shader is a 
function that depends, for example, on the camera position. In fact, reactive calculations are 
implemented at the video card level. Of course, this direction is interesting, but as already 
noted, it will not be considered. 

Here are the types of display implemented on the block. The simplest one is a point cloud, 
which will not be considered, since it is not a continuous display from the point of view of 
visual perception, which in the Laplace transform corresponds to the “original”. In Figure 4 
for comparison, there are two types of display that are hardly distinguishable from each oth-
er, but with a different visualization model. On the left, standard polygonal graphics or bary-
centric coordinates. On the right, visualization by columns. The column is a metaphor. This 
type of display is sometimes called a statistical prismagram (quadrilateral prism) than is a 
three-dimensional analog of a diagram. From a mathematician's point of view, this is the in-
verse transformation for the "image" into the Laplace transform, which is what needs to be 
shown, first by construction. (Visualization is often considered as a solution to the inverse 
problem, but rather we should talk about the solution to the conjugate problem). 

 



 
Figure 4:  Tasks of visualization of a digital surface model, on the left the surface is depicted 

by triangles, on the right he surface is depicted by columns 
 
Figure 5 shows how a statistical diagram is constructed for the two-dimensional case. A 

formal description will be given below, but for now we will limit ourselves to a declarative one 
using cognitive visualization. Historically, the term cognitive visualization comes from solving 
mathematical problems in a graphical way [23]. A statistical diagram is a directed step func-
tion, a function of height, the expected value of which corresponds to the middle of the seg-
ment, interval (shown by the red dot), which corresponds to the Stratonovich integral. In 
three-dimensional space, a two-dimensional interval, taking into account the detail and direc-
tion of the normals, is usually called a micro-face. For example, in computer visualization, 
micrograins are used to display a rough surface. The connection between the microf the facet 
and the cone of normals is obvious. Taking into accountthe level of detail (accuracy), we can 
consider a multiple Stratonovich integral with respect to spatial variables (a stationary pro-
cess), which in the limit is equal to a double. In addition to the display view, “steps” are also 
drawn – partial derivatives (shown by the red segment), which is done for the purpose of con-
tinuity of the display from the point of view of visual perception. It is worth emphasizing that 
for the projection on a plane, the double integral of Ito cannot be drawn by columns, unlike 
the projection on a sphere or cylinder, which is planned to be used in the implementation of 
the wave equation of rendering as a diffusion process. It is known that for a one-way trans-
formation, the variance tends to infinity. Of course, it would be possible to display the height 
value in a square, but such a drawing does not make sense. In addition, the perspective pro-
jection and affine image transformations are linear, so they do not affect the variance (for ex-
ample, for the Alon dispersion), which is important when interacting directly with the DЫM. 

 

 
Figure 5: Statistical diagram - step function 

 



It is worth noting that as a basic type of display, you choose visualization by columns, be-
cause, firstly, there are many vertical lines (steps) in the DSM, and secondly, the area of holes 
is smaller and they are located vertically, and not in a horizontal plane as in the case of polyg-
onal graphics, see Figure 6. 

 

 
Figure 6: Artifacts are visible on the left (blue lines, background colors on the block borders), 

показано and the division into blocks is shown on the right 
 
The question arises whether it is possible to remove artifacts in the image, for example, by 

considering the transport problem at the border of blocks. In the case of polygonal graphics, 
the answer is obvious: you can introduce a dummy line (shadow face) on the border, and take 
the average value of the height at the point (derivative). Of course, there are certain difficul-
ties in terms of programming, which we will not dwell on. However, this approach will not 
work in the case of visualization by columns. Figure 7 is shown to compare the artifacts of 
these two types of mappings. 

 

 
Figure 7: Artefacts at the top for polygonal graphics, at the bottom for bar visualization 

 
What are the holes in the case of visualization by columns? This is the integral metric that 

is the Wasserstein metric for partial derivatives: 
∑ ||∇𝑓(𝑣𝑖)||2

2
𝑣𝑖∈𝑉𝑗 ⃐  

, 

where 𝑣𝑖 graph node, 𝑓(𝑣𝑖) height, 𝑉𝑗⃐   internal border of blocks. 

Integral metric is more informative, than a vector field. It is unlikely that mathematicians 
have considered the problem of removing holes, probably here you can conjure with the m 
Dirichlet distribution or with stochastic control, but such a solution will still lead to exchang-
es between blocks. It is probably possible to dispense with exchanges by approximately re-
defining the partial derivative on the boundary symmetrically down from the previous cells, 



since the three sigma rule holds for the Markov inequality, which is a special case of the Che-
byshev inequality. 

The same approach to DSM visualization is also applicable for three-dimensional meshes, 
when instead of the (graphical) projection filter, a plane cross-section filter (or a sphere 
cross-section for the wave rendering equation) is interactively applied, as a result, it is neces-
sary to determine the Ito formula for filters. In addition, the grid does not necessarily have to 
be regular, it can always be restructured by an octree. In the multidimensional case, a scatter-
ing matrix is used which is directly related to the definition of a fully specified random pro-
cess. See Figure 8, where instead of the “original” (point cloud), visualization by columns is 
used. 

 

 
Figure 8: Scattering matrix, on the left for a point cloud [24], on the right for parallel coordi-

nates [25], which can be considered as a complete differential [26]. 
 
This is the end of the declarative description of the problem, the formalization will mainly 

be based on the monograph [27] by D. F. Kuznetsov: “Some problems in the theory of numer-
ical solution of stochastic differential equations of Ito”. 

 
5.2. Formalizing the visualization of grid task 
Let's start with the introduction of the Ito integral. To get to the integral, the limit of the 

sum is determined in a special way using the step function [4]: 

∑ 𝑓(𝑡𝑖
∗, 𝜔)

𝑖

(𝐵𝑖+1 − 𝐵𝑖)(𝜔) 

Ito integral 𝑡𝑖
∗ = 𝑡𝑖 is used the left end of the segment. It is denoted by: 

∫ 𝑓(𝑡, 𝜔)
𝑇

𝑆
𝑑𝐵𝑡(𝜔). 

The function 𝑓(𝑡, 𝜔) is measurable, consistent, and: 

𝐸(∫ 𝑓(𝑡, 𝜔)2
𝑇

𝑆

𝑑𝑡) < ∞ 

An important property of the Ito integral is that it is a martingale. 
Stratonovich integral 𝑡𝑖

∗ = (𝑡𝑖+1 − 𝑡𝑖)/2  is used midpoint of the segment. 
You can define a generalization of the Ito integral in terms of the probability limit: 

∫ 𝑓(𝑠, 𝜔)
𝑡

0
𝑑𝐵𝑠(𝜔) = lim

𝑛→∞
∫ 𝑓𝑛(𝑠, 𝜔)

𝑡

0
𝑑𝐵𝑠(𝜔), 

Where 𝑓, 𝑓𝑛 ∈ 𝑊𝐻, 𝑓𝑛 is the step functions such that ∫ |𝑓𝑛 − 𝑓|2
𝑡

0
𝑑𝑠 → 0 in probability (with 

respect to P). 
It is obvious that the definition of entropic stability is also a generalization of the Ito inte-

gral through the probability limit. A similar definition is used in [26]. 
Definition 1.2 A sequence of random variables 𝜉𝑘(𝜔) is said to converge with probability 

one or almost certainly to the random variable 𝜉(𝜔): 𝜉𝑘

𝑎𝑐
→ 𝜉 for 𝑘 → ∞ if 

𝑃{𝜔: 𝜉𝑘 → 𝜉 𝑓𝑜𝑟 𝑘 → ∞} = 1. 



This sequence is also called the fundamental convergent sequence with probability one. 
The fundamental nature of a sequence of random variables is a necessary and sufficient con-
dition for the existence of its limit, which is called the Cauchy criterion. 

Let us consider the difference between the standard definition of a completely specified 
random process and the definition in a Banach space 

A random process is considered to be completely specified if its finite-dimensional distri-
butions or a set of distribution functions are specified, which are defined for any 𝑘 ≥ 1 by the 
following relations: 

𝐹𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘) = 𝑃{⋂ {𝜉(𝑡𝑗 , 𝜔) < 𝑥𝑗}
𝑘
𝑗=1 }, 

where 𝑥𝑗 ∈ 𝑅𝑗. 

The converse statement established by Kolmogorov is also true:  
If the functions 𝐹𝜉(𝑥1, . . . , 𝑥𝑘, 𝑡1, . . . , 𝑡𝑘) for all 𝑘 ≥ 1 satisfy the conditions: 

1. 𝐹𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘) is a joint distribution function of k random variables. 

2. The identical equality holds 

𝐹𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘) ≡ 𝐹𝜉(𝑥𝑖1 , … , 𝑥𝑖𝑘𝑡𝑖1 , … , 𝑡𝑖𝑘) 

for any permutation 𝑖1, . . . , 𝑖𝑘 of the numbers 1, . . . , 𝑘. 
3. lim

𝑥𝑘→+∞
𝐹𝜉(𝑥1, … , 𝑥𝑘 , 𝑡1, … , 𝑡𝑘) = 𝐹𝜉(𝑥1, … , 𝑥𝑘−1, 𝑡1, … , 𝑡𝑘−1) 

then there exists a random process  𝜉(𝑡, 𝜔) whose joint distribution functions are: 
𝐹𝜉(𝑥1, … , 𝑥𝑘 , 𝑡1, … , 𝑡𝑘). 

Thus, the set of joint distribution functions of values of a random process 𝜉(𝑡, 𝜔) is its ex-
haustive characteristic. 

If the distribution functions 𝐹𝜉(𝑥1, … , 𝑥𝑘 , 𝑡1, … , 𝑡𝑘) have a finite mixed k- derivative, then 

there are joint distribution densities of the values of the random process  𝜉𝑡 at the corre-
sponding time points: 

𝑝𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘) =
𝜕𝑘

𝜕𝑥1…𝜕𝑥𝑘
𝐹𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘). 

In a Banach space the matrix of partial derivatives of x, like the covariance matrix, is non-
symmetric (the derivative on the left is not equal to the derivative on the right). For a sym-
metric matrix the number of permutations is 𝑘! and for a non-symmetric matrix it is 2𝑘. In 
general, we should apply Sinkhorn's theorem [21]. A Hilbert space is a Banach space, hence 
we can consider symmetric matrices in the limit. In this case, multiple integrals arise. Obvi-
ously, detailing on a single block defines a compressive map, so we can apply the Banach 
fixed-point theorem. Gaussian processes, fundamental sequence centering and Laplace trans-
form are typically used to solve problems numerically. 

A random process is called Gaussian process if all its joint distribution densities are Gauss-
ian: 

𝑝𝜉(𝑥1, … , 𝑥𝑘, 𝑡1, … , 𝑡𝑘) =
1

2𝜋
𝑘
2|𝐾|

1
2

exp (−
(𝑥−𝑚)𝑇𝐾−1(𝑥−𝑚)

2
), 

where 𝑥 = (𝑥𝑥1, . . . , 𝑥𝑘)𝑇, 𝑚 = (𝑚1, … , 𝑚𝑘)𝑇, 𝑚𝑖 = 𝑀{𝑚𝑖} and covariance matrix 𝐾 = 𝐾𝑇 > 0. 
The process °

𝜉𝑡

= 𝜉𝑡 − 𝑀{ 𝜉𝑡} is called the centered component of the process 𝜉𝑡 . 

The function: 𝑅𝜉(𝑡1, 𝑡2) = 𝑀 { °
𝜉𝑡1

°
𝜉𝑡2

} is called a correlational function of the process 𝜉𝑡, 

where: 
𝐷{𝜉𝑡} =  𝑅𝜉(𝑡, 𝑡) , 

where 𝐷{𝜉𝑡} is dispersion of a random process 𝜉𝑡. 
In order for the function 𝑅𝜉(𝑡) for 𝑡 ∈  ( −∞, +∞) to be a correlation function of a broadly 

stationary random process 𝜉𝑡 satisfying the condition: 
 𝑀{ (𝜉𝑡+𝜏 − 𝜉𝑡)

2} ⟶ 0 for 𝜏 ⟶ 0, it is necessary and sufficient that it admits the representa-
tion: 

𝐹𝜉(𝜔) = ∬ 𝑒𝑖𝑡𝜔𝑑𝐹𝜉(𝜔)
∞

−∞
, 



where 𝐹𝜉(𝜔) is an arbitrary non-negative bounded monotonically non-decreasing function 

that is continuous on the left. 
𝐹𝜉(𝜔) is called a spectral function if it is absolutely continuous and 

𝐹𝜉(𝜔) = ∬ 𝑆(𝑢)𝑑𝑢
∞

−∞
, 

where 𝑆 (𝑢)is the spectral density of the process 𝜉𝑡. 
Obviously, a special case of a spectral function (for example, RGB) is the Fourier trans-

form. The Fourier transform with a shift (the exact value does not coincide with its magmatic 
expectation) is commonly called the Laplace transform. Thus, the visualization by columns is 
the inverse Laplace transform or the conjugate view with the Laplace transform in a Banach 
space. 

It is obvious that the tasks of visualizing the DSM can be reduced to a parameterized model 

of a white-noise random process [27], section 1.3 considering that  
𝑝

𝑁
= 𝜇 → 0, where the 

number of blocks 𝑝 = 𝑐𝑜𝑛𝑠𝑡, 𝜇 is a small parameter. Analysis of the dynamics of interactive 
visualization under random external user influences is reduced to the study of probabilistic 
and statistical properties of solutions of systems of differential equations perturbed by ran-
dom processes (stochastic control). The system of differential equations for a parametrized 
model of a white-noise random process has the form: 

𝑥𝑡̇ = 𝑎(𝑥𝑡, 𝑢(𝑡), 𝑡) + ∑(𝑥𝑡, 𝑡)
1

𝜇
𝜉 1

𝜇2
; 𝑥0 = 𝑥(0). 

The problem of visualizing the DSM is a stationary linear one (see section 1.3 for more de-
tails in [27]) and therefore is not very interesting from the mathematical point of view. 

The development of metaphors for visualization and interaction conjugated with the math-
ematical model also has a certain value. Visualization by a column is not such an elementary 
metaphor, taking into account the block approach. In addition, it gives rise to another meta-
phor – the integral metric for partial derivatives as an alternative to the vector field. 

 

6. Discussion of development prospects for solving the 
problem of stochastic visual information control 

In the examples under consideration, the perturbation in the parameterized model of a 
low-noise random process is related to the amount of data: computational accuracy, the 
length of the task queue, and the length of messages. From the point of view of automatic 
control, the task of visualizing the DSM is stationary linear task and therefore it not very in-
teresting from the point of view of mathematics. However, the block approach itself is prom-
ising, because there are more complex tasks, for example the development of simulators with 
feedback, the task of detection on a height map, the consideration of which we will begin with 
the task of recognizing infant gestures. 

6.1. Infant gesture recognition task 

There is a considerable amount of work on the use of neural networks for recognizing be-
havioral patterns in time series, including for experiments, but their use does not guarantee 
that the problem is solved correctly, especially in cases where validation is subjective in na-
ture. On the other hand, the idea of combining artificial and mathematical intelligence is 
tempting. In addition to the already mentioned noise reduction model, it is worth noting a 
new trend in solving DU, especially inverse problems: neural Fourier and Kolmogorov-Arnold 
operators. In fact, we will consider the Cauchy problem, that is, under what conditions the 
problem of recognizing baby gestures has a solution. 

A multi-leaf skeleton is defined as a multi-leaf shape (a flat shape with self-intersections) 
[28]. A nontrivial problem will be considered when the multi-leaf skeletons of infants are an-
atomically similar. 



The midline of a plane figure is a set of interior points of the figure, each of which has at 
least two nearest boundary points. Solutions to the traveling salesman problem for Delaunay 
graphs (Euclidean minimum spanning tree [18]) are known and Delaunay graphs (Voronoi 
diagrams) are also used to recognize gestures (it is assumed that the distance between the 
nodes of the graph (multi-sheet skeleton) does not change). An important assumption for 
solving the problem is that the node of the graph (joint) has an area (a problem with uncer-
tainty). In this case, the midline s obtained as a union of straight and parabolic segments of a 
plane figure, for example, for the elbow joint it is schematically shown in Figure 9. 

 

 
Figure 9: The median axis of the joint (c) is a concave quadrilateral, the tops of which are 

connected by a parabolic segments 
 
Numerical, sufficiently accurate construction of the subdifferential in three-dimensional 

space, as well as the median axis, is problematic, so another task will be considered. Namely, 
the task of finding a list of eigenvalues of linearly independent subsets (neighborhoods of dif-
ferent joints) for a height map to which the Laplace transform is applied. If two distributions 
of a healthy and potentially sick infant are separated, then they must have a different set of 
transfer functions (gestures), and therefore eigenvalues. The distribution is a height map that 
changes over time. We take two frames that are close in time, subtract one from the other and 
get a matrix with a large number of” zero " elements, which has a block structure. Apply the 
Laplace transform to the block. We construct a transfer function from it, which exists by 
Sinkhorn's theorem [21]: 

If 𝐴 is a matrix 𝑛 × 𝑛 with strictly positive elements, then there are diagonal matrices 𝐷1 
and 𝐷2 with strictly positive diagonal elements such that 𝐷1𝐴𝐷2 is a doubly stochastic matrix. 
The matrices 𝐷1 and 𝐷2 are unique modulo multiplying the first matrix by a positive number 
and dividing the second matrix by the same number. [21]. 

A simple iterative method for approximating a dual stochastic matrix is to scale each row 
and each column of A in turn to sum to one. 

Since the problem on spanning graphs with uncertainty is considered, it may not be neces-
sary to take the difference of frames; it is sufficient to find the eigenvalues for an infinite se-
quence of frames (for each frame separately). 

It can be concluded that the task of recognizing baby gestures is promising in terms of so-
lution, although the known mathematical apparatus is clearly not enough. 

The authors are also interested in other problem statements related to the application of 
stochastic semantics in the field of visualization, which are both applied and theoretical in na-
ture. For example, the Ito formula for graphic filters (parallel filtering of data), consideration 
of the wave equation of rendering as a parameterized model of a white-noise random process 
(geometric solution). 

The authors intend to work closely with the steady-state perturbed processes in the field of 
visualization taking into account the human factor, starting with the implementation of sim-
ple one-parameter tests (graphical filters), the number of which should be sufficiently large so 
that it is possible to calculate hidden dependencies (conditional probabilities) between pa-
rameters, for example, using the Kolmogorov-Arnold theorem or covariance LSM. Let's try to 
reduce the problem under consideration to the solution of an ODE system with interference 
and non-linearity of the filter composition type. (Although, in the field of visualization, it is 



preferable to consider Gaussian perturbed processes, that is, partial differential equations, 
since the Fourier transform and bursts are generally accepted in this field). In particular, it is 
necessary to put forward plausible hypotheses in order to determine the context, quality, cog-
nitiveness and perceptivity of information that have a subjective connotation. 

6.2. Methodology of parameter optimization in reactive computing 
for professional performance assessment 

Interactive visualization can be considered as a random process with an important proper-
ty of asymptotic convergence. Therefore, for a professional user, changing a certain parame-
ter should tend to the optimal value. 

6.2.1. Reactive computing and parallel data filtering 

Data filtering is considered a special case of reactive computing. Data filtering is any oper-
ation on data that changes its quantity. Therefore, adding objects and detailing an image are 
filters, but suppressing noise in an image is not (white noise is not an interference). The most 
widespread is single-parameter data filtering the so-called slicing [9], for example, sections 
by a plane (sphere), or isosurfaces. Thus, parallel sections by a plane have the form: 

∑ 𝑀𝑓(𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 ∈ [𝑑𝑖

𝑖

, 𝑑𝑖+1]) = 𝑓 

where 𝑓 is a spectral function defined at the nodes of a grid (graph), not necessarily regular, 𝑖 
is a numerical parameter (number of blocks)similar to time, a fixed length interval and Δd de-
termines the interferenceassociated with the accuracy of the calculation (measurement) and 
the choice of the number of blocks determinative calculations, for example, interaction im-
plemented using a slider. If we go to the limit with respect to 𝑖 , which tends to infinity, we get 
a generalization of the Ito integral through the probability limit (as noted, in the case of three-
dimensional visualization, it is more convenient to consider the convergence of the funda-
mental sequence in a separable Banach space).  

Let us consider parallel data filtering. From the point of view of parallel computing, be-
longing to a certain interval is a sample, which is convenient to implement as a pipeline. 
“Pipe” is a standard construction in the programming language being developed. Then the 
data must be transferred to the client computer and be displayed on the screen, this display 
must be continuous in a sense, which is the main topic of this section. In essence, this ap-
proach is a formalized generalization of the MVC (Model-View-Controller) architecture. In 
particular, the observer pattern in the context of this work is a stationary perturbed process 
characterized by the equiprobability of messages (reactions). In object-oriented program-
ming, the most natural way to implement reactive computing is to add reactions to the meth-
ods and fields of objects that automatically recalculate values, and other reactions depend on 
changes in these values. In order to optimize performance, graph reduction (syntax tree, Petri 
net) is desirable; for this, it is necessary to store history, which leads to additional overhead 
(noise). In order to simplify the model, graph reduction will not be considered for now, in ad-
dition, data filtering is a higher-level reduction. If we compare the share of reactive computa-
tions with the share of parallel computations, and the execution of reactions with the trans-
mission of messages, then in both cases the commonality of mathematical models is obvious, 
in particular the parameterized model of a white-noise random process, and therefore the 
commonality of syntax in the programming language. In the MVC architecture, using reactive 
programming, it is possible to implement automatic display of changes from Model to View 
and vice versa from View to Model. As noted, parallel (distributed) computations and visuali-
zation introduce their own interference. 

6.2.2 Ito formula for plane section filter 

In practice, a series of cross-sections with a plane parallel to one of the coordinate planes is 
most widely used, due to the simplicity of sampling. Of course, for the chosen values, one 



could apply the Laplace transform (which is infinitely deferential), but the authors intend to 
reduce the problem to an ODE. Consider the perturbed process by setting, for example, Δd =
Δ𝛿𝑧, so that the perturbed plane passes through the middle of the parallel plane. Since there 
are two possible intersections, it turns out that the order of variables is important: the result-
ing set will be open in 𝑥 and closed in 𝑦 or vice versa. For simplicity, we will consider a lattice 
(a regular grid) with the amount of data 𝑓 = 𝑁3. The purpose of this analysis is to estimate 
the amount of data, for example, in order to reserve memory on the GPU, when applying a 
cross-section plane filter (in the general case, an arbitrary filter). Obviously, two options are 
possible: projection бof the nearest neighboring nodes on the perturbed plane (filter), which 
belonged to the neighborhood Δz above the plane and in the middle of the plane. In the first 
case, the additional amount of data is 𝑁, which is similar to the Ito integral, and in the second 
case it is 2𝑁, which is similar to the Stratonovich integral. We will call this approach an expert 
approach. 

Theorem: Let  𝑓(𝑁, 𝑥⃗) be a perturbed random process (Ito) with respect to the amount of 
data. If the Ito process is a martingale, then for any filter 𝜑𝜖𝐶2 that is twice continuously dif-
ferentiable 𝜑𝑓(𝑁, 𝑥⃗) is a martingale. 

Proof: Let us consider only the proof scheme. Let the filter 𝜑 be a generating operator 
(twice continuouslydifferentiable). Further, as for the one-dimensional Ito formula [4]. 

A consequence of the Ito formula is invariance with respect to the sum of integrals. An ex-
pert approachд in the case of the Ito process gives the following formula: 

𝑓 = 𝑁3 → 𝑓′(𝐵𝑁) = 𝑁2 + 𝑁, 
where 𝑁 is 𝑡ℎ𝑒 𝑑𝑠 integral. 

From which it is not difficult to suggest the Ito formula for a filter with a cross-section 
plane (the derivative of the filter) 

𝑓′(𝐵𝑁) = (𝑛 ⃗ , ∇ ∏ 𝑥𝑖)|𝑥𝑖=𝑁 + 𝑁. 

Since the value 𝑜𝑓 𝑑𝑠-integral is 𝑁, the amount of datax cannot be too large. For example, 
when the accuracy of calculations is comparable to the accuracy of arithmetic operations, a 
certain jump will occur in the constantly expanding open set (in this case, a neural network is 
said to have retrained), which may give some other interpretation of the generalized theorem 
of thermodynamics [15]. 

Now, instead of the plane section filter, consider, for example, a cylinder section. The au-
thors' imagination is not so developed that they always use an expert approach. Is it possible 
to use the Jacobian (generating, characteristic (Hessian) operators) instead of the scalar 
product of the normal and gradient? It also seems obvious that the Jacobian is a martingale. 
The direction of the normal is important for visualization. Considering data filtering as differ-
entiating a multidimensional random process with respect to a filter has certain prospects for 
visualizing multidimensional data (visualization with uncertainty, displaying the ds-integral) 
and evaluating computational methods from the point of view of SDE. Promising areas of sto-
chastic visualization research: uncertainty visualization, stochastic rendering model (explicit 
feature extraction), considering a random process not by the amount of data, but, for exam-
ple, by curvature (for example, a perturbed surface of rotation is given, it is necessary to find 
a perturbed axis of rotation). 

6.2.3. Basic definitions and demonstration examples in the methodology of parameter opti-

mization 

In reactive computing, changing the interval length will lead to automatic recalculation of 
the function, for example, at the nodes of the plane. The formalization is based on the analogy 
that reactive computing can be considered as a particular solution of a differential equation or 
a phase trajectory in which the initial data (parameter values) change. (The authors have pre-
viously actively used the concept of a program trajectory [29]). Thus, parallel sections of a 
plane are a set of perturbed trajectories, where each plane is a set of perturbed trajectories. 
We emphasize once again that discrete time in this case is the number of planes (the number 



of blocks). The trajectory taking into account events will be denoted by f(∙,ω), an example of a 
stochastic trajectory of a program is shown in Figure 10. For comparison, Figure 11 shows a 
program trajectory (reachability set) that explicitly depends on time - f(∙) [30]. 

 

 
Figure 10: Stochastic trajectory of a program 

 

 
Figure 11: time-dependent trajectory of a program (reachability sets) 

 
It's time to move on to the definition of concepts that have a subjective connotation: 
1. The context (of information) is fully described by the filter pipeline, the penalty func-

tion, and interference. Therefore, a monotonous task in the sense of a professional approach 
from the point of view of DS is a typical parallel pipeline. 

2. Information quality is a relative, non-probability (fuzzy) entropy (in fuzzy entropy, 
probabilities are replaced by a membership function, the value of which is determined by an 
expert). 

3. Cognitiveness of information is the infimum of information quality. 



4. Perceptiveness of information is the supremum of information quality, for which it is 
assumed that the PSNR (peak signal-to-noise ratio, where noise is the root mean square er-
ror) metric will be used. 

Based on the visualization examples, we will give some explanations to these definitions. 
In such cases, we consider a Dirichlet problem with stochastic control of the form regulator 
with incomplete information about the state of the system-the problem of stochastic control 
of visual information. It is known that the exact upper bound must be determined to solve 
this problem, and therefore the exact lower bound пis not interesting in the modeling pro-
cess. 

The PSNR metric is widely used in the field of visualization, for example, in the noise re-
duction model, see Figure 12 [2]. 

 

 
Figure 12: Original image and Noisy image, PSNR=29.38dB. 

 
For compressed images with PSNR=40-50dB, the image is considered to be of good quali-

ty. Even at a sufficiently high noise level, a person can determine that the drawing shows a 
woman. Therefore, the authors defined the cognitiveness of information as the exact lower 
limit of information quality. However, the author is interested in perturbed processesы, so a 
more obvious example is the mapping of a step function. 

Imagine displaying a continuous function with several local extrema on the screen, where 
the partition parameter is the number of intervals. Although the cognitiveness of information 
is not particularly interesting in terms of modeling, it is likely that the exact lower bound of 
information quality corresponds to the minimum of noise (variance) between the points of 
local extremes and their projections on intervals. Since the screen consists of pixels, the exact 
upper bound will be defined on the Polish space (a space homeomorphic to the complete met-
ric space with a countably dense subset). The following arguments are aimed at lowering the 
exact upper bound. You can add a line thickness to the image (Lifshitz condition) so that it is 
dense on a finite subset (all thick intervals touch each other). Such images will be called con-
tinuous from the point of view of visual perception (perceptively continuous).  The compensa-
tory function of human visual perception is well developed, so we can assume that the aver-
age noise value is less than the line thickness. In fact, this is a Bernoulli distribution. We will 
call such images compensatory-continuous.  An example of such images is Figure 7. 

Since the PSNR metric is used for two close images, it becomes necessary to fix the image 
selected by the expert. We will consider the parameter values corresponding to this image to 
be optimal, which can then be clarified based on the test results. Another hypothesis is as fol-
lows: if a person chose a parameter value less than the optimal one, then his left hemisphere 
(logical thinking) is more developed, if more, then the right one. The following is an example 
of an expert approach in the field of visualization. The hybrid view was considered for the im-
plementation of the DSM flyby, but was not used, since the perturbed Gaussian processes 
coped well with this task. 

The hybrid view of the display in the center (in the direct view area) has good accuracy 
(core), but in the periphery, the accuracy is worse (media). This task is formulated as follows: 
maximizing information (visualization quality) with a fixed GPU memory size. Next, we con-
sider fundamental sequences; assuming that there is one node of the graph in one graphic 



primitive. Since graphic primitives occupy different volumes, this problem statement makes 
sense. 

Modeling is based on an expert approach:  
1. The quality of visualization is equal to improbability entropy. 
2. An antitone distribution is constructed, see Figure 13. where V is voxels, T is  3D-

textures, P is polygonal graphics, and C is a point cloud. 
3. We define the quality of visualization as a function of belonging: 

𝜇(𝑉) = 1, 𝜇(𝑇) = 0.9, 𝜇(𝑃) = 0.8, 𝜇(𝐶) = 0.7. 
 

 
Figure 13: Antitone distributionе 

 
Consider the set of core-carrier permutations in a block model. We assume that the visual-

ization quality of the permutation is higher if the improbability entropy (maximization prin-
ciple) is correspondingly higher. The non-probability entropy is an integral characteristic of 
the fuzziness of a fuzzy set. It is calculated using standard formulas [31] - this is the normal-
ized Shannon entropy: 

H = −
1

lnN
∑ pilnpi

N
i=1 ,  pi=

μA(xi)

∑ μA(xi)
N
i=1

 

An intermediate goal of parameter optimization methodology is the development of single-
parameter tests.  

Let's consider a filter “a series of layers” Figure 14. A set of transformations of visual repre-
sentation for improving the quality of perception “a series of layers” [30] has been developed 
and programmed. It allows one to look at the inner part of the surface, and human visual per-
ception can approximate the surface on empty intervals (compensatory continuity is consid-
ered). It is possible to calculate a metric, which the authors called the information gap: 

sup
𝑝

𝑃𝑆𝑁𝑅𝑖𝑛

𝑃𝑆𝑁𝑅𝑒𝑥
, where 𝑝 is the number of blocks (non-empty intervals), 𝑖𝑛 is the inner part of 

the surface and 𝑒𝑥 is the outer part of the surface. 
Obviously, for a single-color cylinder, three nonempty intervals are sufficient. In this way, 

you can define a random process (interactive visualization) that maps the number of colors 
and the curvature of the surface to the number of intervals and the length of the interval 
(which can be calculated from the number of intervals).  In other words, the user is given the 
task to change the number of layers, which should tend to the optimal one. Thus, you can 
track three quasi-objective parameters: the deviation from the optimal number of layers in 
(you can also add plane clipping, but one parameter is better to start with), the number of it-
erations, which determines the convergence rate, and the binary parameter (presence) that is 
change of point of view. 

The programming goal is to create a set of such tests.  In the context of visual perception, 
autists know a certain number of such tests that are not sufficient for modeling: the sunrise 
metaphor, motion parallax, and contrast change. 

 



 
Figure 14: Visual image of the reachability set with added transformations a y-axis clipping 

and a series of layers along the ϕ-axis [30]. 
 
To conclude this section, we will add a couple of obvious definitions. The combinatorial 

function (human) in the case of independent variables (parameters) is described by the 
amount of information (the property of information additivity), and in the case of dependent 
variables by the Kolmogorov-Arnold theorem, since only continuous maps are considered. A 
compensatory function is a weighted sum with variable weights (a person automatically de-
termines these weights depending on the situation, as noted above, the Bernoulli distribution 
can be considered). 

7. Conclusion 
For software verification, as well as for visualization, SDE, information theory, and signal 

graphs are used in this work. This approach is called stochastic semantics. It is important that 
the visual process is a parallel processом (interacting sequential Hoare processes) from the 
point of view of programming and a random processом from the point of view of mathemati-
cal modeling. 

Considering problems related to really big data inevitably leads to the use of a block ap-
proach. In parallel computing, a block can be associated with a processor and the task of max-
imizing entropy (performance) can be considered. In the developed dynamic system of online 
visualization and parallel computing for geometric parallelization, it is possible to implement 
and compare a stationary random process and a steady-state random process, which have dif-
ferent analytical solutions. This allows us to conclude that the proposed implementation of 
the stationary process has a certain novelty. 

Not much has been done in the field of visualization verification – grid visualization is 
proposed, which is considered as a parameterized model of a white-noise random process. 
The authors are also interested in other problem statements related to the application of sto-
chastic semantics in the field of visualization. I would particularly like to mention the re-
search series on generalized computational experiment [28]. 

Of course, this work cannot be considered complete, but the direction that the authors 
called stochastic semantics is obviously promising. The authors intend to deal closely with the 
established perturbed processes in the field of visualization, including taking into account the 
human factor (the outline of formalization is given in the form of a discussion for the detec-
tion problem and methods for optimizing parameters in reactive computing for evaluating 
professional activity). 
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