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Abstract. Interactive visualization of high-performance computations is impor-
tant area in supercomputing.  Interactivity  assumes that visualization of results
of computation  is  generated during computation process. However there is a
problem: due to overwhelming size of data to visualize, a visualization program
should be itself parallel and executed on supercomputer. Beside that, such pro-
gram should allow to be changed dynamically, because visualization pipeline
may change  due  to  user  steering  of  interactive  visualization.  Current  main-
stream frameworks for interaction with supercomputer programs assume usage
of external parallel programming methods. In current paper, an original parallel
programming model is suggested that have built-in capabilities for online inter-
active visualization.  At basic level,  it is based on messages and reactions. At
higher level it  uses promises for inter-operation of computation and visualiza-
tion parts.

Keywords: Computational Model, Parallel Programming, Online Visualization,
Insitu Visualization.

1 Introduction

Interactive visualization of high-performance computations is covered by online
and insitu visualization areas. These are crucial  areas in modern supercomputing. In
some cases, it is impossible to achieve results of computation without them [1,3].

Online visualization is a process of interactive visualization of running computa-
tion [1]. Insitu visualization is a process of generating visual images of results during
computation [2]. The difference is that online is considered to be interactive, steered
by user or algorithms working on user’s behalf.  Insitu on other hand underlines the
placement of visualization processes closer to a computation. Whereas terms are dif-
ferent, they are interconnected and have common aspect: use of supercomputer not
only for computations, but also for visualization purposes.

Due to the fact that supercomputer power is to be used, visualization pipeline algo-
rithms have to be implemented in parallel form. Thus, to achieve online visualization
of supercomputing, following tasks have to be solved:

1. Provide a way of interaction of visualization part and computation part.
2. Provide a way of parallel programming of visualization algorithms.
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The first task usually is solved using various approaches, for example see [2,3,4].
A most common approach is to provide some data transmission service, and a library
for interacting with it. Computing application is instrumented with calls to such li-
brary and thus data is  offloaded from application into visualization processing via
such transmission service.  However,  existing approaches  doesn’t  solve the second
task – they don’t provide any parallel programming models, in particular for imple-
menting visualization algorithms. 

On other hand, there are a plenty of technologies for parallel programming. How-
ever they are mostly not considering an interaction with existing parallel programs,
which are built using other parallel technologies. They are more focused to be self-
sufficient. Thus often a some kind of bridge is required.

In the current paper, the author suggest single solution that solves both stated tasks.
The solution is proposed in a form of computational model. It may be used for inter -
action with HPC programs and for programming parallel algorithms of visualization.

The current paper is devoted to the main part of any software technology – the
model. It is called main because other parts, e.g. implementation, depends on it. The
suggested model, in turn, is not a ready-to-run software. It may be implemented using
various programming technologies with some kind of model variations. 

We need to note the following. It might be philosophically incorrect that single tool
solves two problems, as in our case. In current work, we join those problems into one:
construct a way for high-performance online visualization. At least, it is not looking
bad to have  a  parallel  computational  technology that  may interoperate  with other
computational technologies well.

The structure of this paper is as follows. In Section 2, the problem statement is de-
fined. Sections 3, 4 and 5 propose a designed model for parallel programming. Sec-
tion 6 highlights prototype implementation details. Section 7 suggest an experimental
application of the model for parallel rendering task. Section 8 express related works.

2 Problem Statement

To going further, we should define what we consider as a typical parallel computa-
tional program. It will give us a picture what kind of software in which environment
we should operate with for online visualization.

2.1 Formalization of Online Visualization
Without loss of generality,  we  fix the scope of the developed online visualization
model in the following formulation.

There is a set of information entities {D}. Each entity D divided into parts in the
domain sense (so called domain decomposition), e.g. each D = {di}. For example, one
may consider a  structured grid  D which is  decomposed into parts  {di},  as on fig. 1.
These parts di  are such that each part fits into the memory of the computation process
that calculates this part (whereas maybe two parts will not fit in its memory). 

The scientific simulation is implemented in the form of a set of computation pro-
cesses (processes of the operating system and processes on accelerators like GPU) lo-

https://summerofhpc.prace-ri.eu/can-you-briefly-explain-the-domain-decomposition-method/
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cated on a set of hardware nodes. These processes interact  as necessary with each
other and with external sources for the exchange of input, intermediate, boundary, and
output values. The set of computation processes and the structure of their interaction
can change over time, as well as the set of computed entities {D}. 

Fig. 1. An example distribution of structured data on computation cores, from [5].

A significant feature of entities D is that their content (e.g. data) changes over time.
Thus, entity D is a "living" informational "matter", its life (evolution) is a process of
change of it’s content in the course of the computational process.

The variability of the content of  D is primarily due to the limited memory of the
hardware nodes. Usually, only the contents of the previous and current iteration step
of the computational process are stored in memory. Of course, in general,  computa-
tion may store a larger number of steps in  nodes memory (for example also using
disks). But this does not change the nature of the entities D - they evolve in time, and
a limited trace of their states or images of that states from previous iterations follows
them.

At the same time, in practice, the structure of the partition of D onto parts di does
not usually change during the calculation, although this is sometimes used, for exam-
ple in adaptive mesh refinements. 

The task of online visualization is to build numerical and visual images of entities
D and transfer them to the destination, build visual images of the composition of com-
putational processes, supply control signals to computational processes, and possibly
manage their composition (that is, control the calculation process).

Using to this definition, insitu visualization may be considered as a specific case
or part of online visualization. It doesn’t need interactivity and concentrates on gener-
ating images using HPC power. Also, parallel rendering and remote visualization
may be considered as areas used by online visualization: they fit naturally in the phe-
nomenon.

Now we are ready to provide problem statement: create a technology (a model, and
it’s implementation) that solves the stated task of online visualization.

https://en.wikipedia.org/wiki/Adaptive_mesh_refinement
https://doi.org/10.14529/pct2022
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3 Computation Model. Basic Level

The model consists of three levels. This section deals with the first, basic level. Then
in ongoing sections two additional levels will be described.

The  model  starts  with  the  concept  of  a  message.  A message  is  a  triple  
(label,dictionary,payload), where

 label –  is a message label
 dictionary – is a key-value dictionary
 payload – binary large objects associated with that message.

The message label may be different, which will be discussed later. A dictionary is
understood in the usual programmer sense, that is, a set {(key, value)} with unique
keys. The payload is the additional binary information associated with the message.
Its structure and meaning are determined by the interacting parties. The payload is not
placed in the dictionary for technical purposes – so that the dictionary takes up rela-
tively little memory; while a payload can be relatively large.

A system  is a computation that performs certain actions according to the model.
Acting parties interacts with each other via the system by the following.

The message can be "sent" to the system. The system processes incoming messages
using the so-called reactions. Reaction is the pair of (criteria, action) , where

 criteria – triggering criteria,
 action – action to execute when the reaction triggered.

Any party may register reactions within the system. When a new message is sent,
actions of all reactions whose criteria matches a message are executed, in order as
they were registered. 

Actions can do arbitrary processing and, in particular, a) test additional conditions
(inexpressible in criteria), b) send new messages to the system, c) register additional
reactions. Additionally, an action is able to cancel further processing of other actions.

The list of registered reactions can change dynamically over time. 
Reactions are considered to have no shared state between each other. This design

decision allows to execute actions without synchronization, in parallel for each arriv-
ing message.

A note about the reaction criteria.  The criteria used by model  might be  different.
The main demand for criteria is that is should allow to identify reactions matching in-
coming message with little computational complexity.

Without loss of generality, the current paper uses the following mechanism of cri-
terion: the message label and reaction criterion are strings. If message label equals to
criterion, then (and only then) we assume that criterion matches that message.

The reaction definition operates criteria, while here we denoted single criterion. It
is  assumed that criteria is constructed as a list of criterion. When message matches
any of criterion from list in reaction, the message is considered matched to that reac-
tion.  Thus, we  consider logical OR. This design decision is made  because it is er-
gonomic to have single reaction to match different kinds of messages.
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4 Computation Model. Service Level

The basic level of the model does not allow solving the entire range of tasks required
to solve online visualization problems. However, this level is extensible, it allows to
add additional features to it. It is suggested to add these new features using the fol -
lowing concept of services.

A service is a set of reactions registered within the system, and possibly additional
software processes and other components. Together, they implement the functionality
of a service, e.g. some logical process.

Interaction with services is expected to be done primarily through messages in-
troduced at basic level of the model. This design decision allows other parties to hook
into such communications by placing additional reactions, which is considered to add
flexibility to the computation. But there is no restriction that interaction is allowed
only through messages. One may implement custom API of any service if required.

The list of services can be updated as needed. To date, the practical need for the
following services has been identified.

4.1 Service for Managing Reactions via Messages

It was found convenient to manage list of reactions using messages. This allows to
use only message sending API to interact with the system. The service adds the reac -
tion to the system that reacts to following message:

 label: “manage_reactions”
 cmd:"add" | "update" | set | "remove"
 reaction_id: string
 criterion: string, a criterion of controlled reaction
 action: string, the action code of the controlled reaction.

When message of such kind arrives, the service manages the list of reactions regis-
tered.  The service  assumes  that  each  reaction  must  be  associated  with a  globally
unique identifier. This is due to the need to distinguish between reactions. 

The action code of an action  is  assumed to be  possible to execute in a program-
ming environment that the system supports. It may contain for example source code
in interpreted language like Python or IDs of  methods to invoke for compiled lan-
guages.

4.2 Query Service

A query is a special kind of reaction, which differs in that the action of such reaction
is executed on the client process that issued the query. As a consequence, an action
may directly interact with a client program. Additionally, query may have a counter N
which means that action should be executed no more than N times. Queries are useful
for  detecting  messages  of  interest  and  implementing  various  logic.  For  example,
queries are used by following runner service to register tasks to be executed.

Query service might be implemented using ordinal reaction, whose action send sig-
nals to the client using some network protocol, when message of interest is detected.
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4.3 Task Service

Task service is designed to execute arbitrary tasks using automatic balancing. Clients
schedules  tasks using messages.  Tasks then distributed to dedicated  runner nodes,
which in turn execute these tasks and respond with results. This allows to  program
various algorithms using steps (e.g. a task is a such step) that are executed in parallel.

A task in our model is scheduled using message of the following signature:
 label: “exec-request”
 code: operation code
 args: a list of operands for operations
 result-label: the label for message with results of execution.

Here operation code defines operation to be performed. Args is a list of operands
that may contain constants, references to payloads (see payload service),  and other
values recognized by the system. They will be passed to the operation. After execu-
tion of the operation, it’s result is sent using message with label specified by result-la-
bel. This allows client to generate unique label, issue tasks, and catch results of those
tasks.

Operation code might specify function in some programming language, or might
specify a function defined in operations table. In latter case, such table is configured
using messages of the following signature:

 label: “setenv”
 name: string
 value: definition of function to execute.

Here name corresponds to operation code. Value defines a function which will be
called when operation is called. For example, it’s code in a programming language.

Additionally, it might be useful to consider different values for single operation,
corresponding for different execution environments. For example, one may specify
operation both for CPU and for GPU. The system then will be able to choose appro-
priate variant according to actual hardware environment.

A note on “needs”. During experimentation it was noted that it is inefficient to exe-
cute some  tasks from scratch. Sometimes, there are repetitive  subtasks occurred re-
quired by various tasks. An example of such subtask is to load some programming li-
brary, configure a kernel for GPU, and so on. It was found efficient to cache results of
such subtasks and reuse them between different  tasks. Thus a concept of  needs  was
appeared.

A need  is state of memory and hardware that is required by tasks to perform. A
same need might be required by different tasks, and might be reused. A runner, before
running operation of a tasks, prepares all needs required by that tasks. If some need is
already prepared (e.g. its result is in cache), runner just touches it’s access timestamp.

Needs should be identifiable, because caching algorithm should be able to distin-
guish them and associate with incoming tasks. Thus system user have to provide glob-
ally unique identifier with each need.

As it noted, a need corresponds to some state of memory and hardware. This means
that need is tied to runner, and different runners prepare their own copies of needs.
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Needs of a task are enlisted in args field of task signature (specified in exec-request
message), together with other arguments. After a need is computed, it’s value replaces
corresponding argument. Thus applicative-order evaluation is performed.

A note on resources limits. Both operations and needs require computing resources
to be available: for example, some amount of memory, hardware, so on. The actual
amount of such resources on available nodes is limited. So the implementation of the
computational model should consider those limits and and correlate them with task’s
and need’s requirements.  This is also important  for maintaining cache of prepared
needs to keep it within available limits.

4.4 Payload Service

Payloads are binary large byte objects (blobs).  Due to the large amount of required
memory, they are processed separately from message bodies. It is implemented by a
special service that store payloads and present them as needed. This significantly “un-
loads” the main system. This idea was suggested earlier by M. O. Bakhterev [6].

If one want to send a message with payloads, it should go through following:
1. Upload payloads to the payload service.  The service generates unique URL

for each stored payload. This URL might be used later by any other parties to
download payload from the service.

2. Put the received URLs of payloads into payload field of the message dictio-
nary, and then send the message to the system. 

Implementation of payload service should consider the aspect of actually not mov-
ing data when payload is “uploaded” or “downloaded”. Same should be implemented
for memory on accelerators. Thus, any real movement of data should occur only when
data is requested by party on remote node. This for example might be implemented by
placing service parts directly into client processes.

However, extra “technical” movement of data may occur to offload payloads from
RAM to persistent storage when it is still required but not accessed to offload RAM.
Thus, service should act like a cache.

Implementation also should cleanup of payloads that are no longer required.  It  is
sophisticated theme and might require additional actions from client to take care of
some kind of payload usage counters. In ideal, specific cases, it  probably might be
done automatically,  like some kind of garbage collection. Such automatic cleanup
probably will be simplified by tracking promises (see below).

Additionally, payloads service might be better interconnected with task service, in
aim to implement interleaving of data movements and task computations.

5 Computation Model. Promise Level

Usage of the model shown above is still not ergonomic for final applications.  Addi-
tional primitives are required to make application code shorter and clearly to human
mind.

https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html#%25_sec_1.1.5
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One suitable known primitive is a promise (also called a future). It was developed
by many researchers almost 50 years ago, see for example [7]. A promise is an object
that corresponds to data that will be calculated sometime.

A promise can be created in one process,  resolved  in another process (also term
fulfilled is used, e.g. bound with data), and perform reactions to promise resolution in
some third processes. Promise objects may be freely copied between parties, for ex-
ample using messages. 

The convenience of promises lies in the fact that they can be operated on at any
time, even before they resolved. This makes possible to represent parallel processing
algorithms using sequential codes, like in Example application section.

Promises can be created explicitly or implicitly. One of the convenient methods of
implicitly creating and using promises is linking them with asynchronous task execu-
tion, which we employed in Task service, section 4.4.

To do this, we extend our model with the following:
 Each task submission is  associated with a promise object.  Thus client

scheduling a task gains a promise object of that task.
 Allow to specify promises in arguments of scheduled tasks.

In case if task have one or more promises in arguments,  its  calculation is started
only when all such promises are fulfilled. Corresponding arguments are substituted by
values of that promises. Thus task operation works as before, using arguments as val-
ues and don’t boring that they were generated by other tasks.

Sometimes it is required to pass promises to tasks by reference, without applying
synchronization logic. Implementation should consider that case.

Explicit promises. Another way of creating promises is to create them explicitly. We
add following operations into model for that:

 create_promises: n → list of p – creates a list of n promises,
 resolve: p,data → void –  resolve promise p with data.

Promises created this way might also be used in arguments of tasks, same as prom-
ises created implicitly. So system will wait their fulfillment before running tasks. 

Usage of promises. Explicit promises trivialize connection of the discussed computa-
tion model to scientific simulations. We consider the following scenario. As it stated
before, each iteration of simulation computes some entity D that has domain decom-
position  {di}. Let  each  iteration  of  simulation have  associated  structure  S={pi} of
promises corresponding to that domain decomposition.  Each computational process
of simulation fulfills promises which correspond to parts of D that this process com-
putes. Simulation sends S to the system. Visualization algorithms get S and schedule
tasks based on promises from S, required to achieve target visualizations.

This logic is modular. Each visualization algorithm may be expressed then as a se-
quential function from S to R, where S is a structure of promises describing source
entity and R is a structure of promises describing result of algorithm application. 

Such algorithm implementation considered as following. It gets  S in arguments,
then schedules a set of tasks to task service, passing promises from S as arguments for

https://en.wikipedia.org/wiki/Futures_and_promises


9

that tasks. Because the model have feature to get promise for each scheduled task, al-
gorithm may then pass such promises to additional tasks or sub-algorithms, so on. Fi-
nally, it achieve promises of R and returns it.

Above-mentioned visualization algorithms are functions, however online visualiza-
tion is a process (because it visualizes ongoing computations). To create a process of
visualization, we consider following: add a reaction for each new incoming S, issued
by simulation, and pass execution to visualization function with that  S as argument.
Thus we will achieve that visualization will be built as simulation goes on.

6 Prototype Implementation

The author develops  implementation of the suggested model. It uses Javascript lan-
guage and works within NodeJs and in browsers,  and uses TCP, HTTP and Web-
socket  protocols  for  inter-node communications (use  of  OpenUCX is  considered).
Following some ideas achieved during implementation of the model are highlighted.

Client library. It was found convenient to use client library to access the system API.
The library provides entry points for all services described above:

 msg(m)  –  send  message  m to  the  system.  The  m is  considered  to  be
javascript object with label field, maybe payload and other fields.

 reaction( criteria, action ) – register a reaction within the system, which will
call action for every message that meets criteria. The action is encoded as a
string with a function in Javascript language.

 query(criteria,N,callback) – put a query to the system which will call  call-
back for at most N times and then stop reacting to messages.

 exec( opcode, args ) – schedule task defined by (opcode,args) to the task ser-
vice and return task’s promise.

 setenv( name, value ) – define operation where name is operation code and
value defines body of operation.

 promise(N)  and  resolve(p)  –  explicitly  creates  N  promises  and  resolves
given promise.

Thus all clients load the API library and interacts with the system using calls to it.

Distributing reactions. First implementations were sending messages to some central
master node which role was to execute all registered reactions. It was occurred to be
non effective. Then a new approach was developed with idea to distribute reactions to
clients. When client “sends” a message to the system, it actually doesn’t send it, but
executes actions of registered reactions corresponding to that message. To get reac-
tions, clients asks the central node, one time per criterion. Thus actions are executed
concurrently, on the client processes. Central node role is to manage list of registered
reactions, and to send parts of that list and following updates to active clients.

https://github.com/pavelvasev/ppk
http://theory.stanford.edu/~rvg/process.html
https://en.wikipedia.org/wiki/Process_calculus
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Query service. As reactions are executed on clients, query service was implemented
by the following. When some client (query owner) issues a query, a local TCP server
is started up inside that client’s process. It provides endpoint URL which is ready to
receive incoming messages asynchronously. Then query owner registers new reaction
within the system. It’s criteria is a criteria of query, and it’s action is to send TCP re-
quest with found message to endpoint of query owner. Thus when some party “sends”
message to the system that is interesting to the query, it actually sends that message
directly to the query owner.

Task service.  Current implementation introduces concept of runner processes  and
runner-manager process. The manager queries all upcoming scheduled tasks by plac-
ing query to messages with exec-request label. Runners advertise them to the manager
using special messages with runner-info label. The manager continuously executes as-
signment algorithm to decide which tasks on which runners to perform. It then assigns
tasks to runners. When runner achieves a task, it executes it and sends results to the
manager and to the client of the task.

When assigning tasks to runners, the manager considers  needs that already pre-
pared on that runner, solving the assignment problem with some kind of heuristics.

Runners track ready state of tasks assigned to them (e.g. all promises in arguments
in task are resolved), and execute them as they become ready.

Payload  service  is  implemented  as  a  part  of  client  library  and  additional  set  of
servers, which are started on each hardware node participating in computation. When
client submits payload, a pointer to payload in RAM is stored in client state. Then a
server is started inside client process. Then client library returns unique URL which
may be used to access that payload from outside processes within the system.

Thus,  when  client  sends  message  with  payload,  actual  payload  bytes  are  not
moved. It might be transmitted over network later, if some other client would decide
to download that payload.

Connecting to other platforms. In spite of  current implementation uses Javascript
language, it might be used within other platforms. First of all the machine-code plat-
form is considered (C++, Fortran, so on) because it is most often used in scientific
computations. Two ideas are considered for connecting to other platforms:

 Middleware nodes.
 Specify reaction’s actions in different languages.

Middleware node is a node that on one hand interacts with the system, and on other
provides special API for it’s clients on other platforms. For example, it might be inter-
esting to provide API based on some kind of FUSE file systems to interact with the
model. In that idea, writing to file of some specific path will issue the message, while
reading some file leads to performing a query.

Another  option  is  to  allow specifying  reaction’s  action  in  language  other  than
Javascript. Currently we implemented this by creating plugin system for runners, and
created a special plugin to execute Python codes.

https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://www.usenix.org/publications/loginonline/transcending-posix-end-era
https://en.wikipedia.org/wiki/Assignment_problem
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7 Example Application

We showcase the model with parallel interactive rendering of rectilinear grid of cells.
It is not actually an online visualization, but it is very close for it’s needs. The appli-
cation is a simplified version of comparison test of ParaView and ScientificView vi-
sualization systems given in [5]. In our case, cells have no associated values, just ge-
ometry in form of voxels.

let K = 50

let filenames = ["1.dat","2.dat",…,K+".dat"]

let blocks = filenames.map( __load )

rapi.query( "render",(m) => {

 let images = blocks.map( b =>

                      __render( b, m.camera_position, m.w, m.h) )

 let final_image = recursive_merge( images ) 

 rapi.msg( {label:"image", final_image } )

})

function __load( filepath ) {

  return rapi.exec( arg => 

      read_file_as_floats(arg.filepath),{filepath} )

}

function __render( block, camera_position, w, h ) {

  return rapi.exec( arg =>  arg.render_fn(arg.camera_position), 

      {render_fn: {code: "cell_render_func", need: true, 

                   arg: {block,w,h}}})

}

function recursive_merge( images ) {

  if (images.length <= 1) return images[0]

  let acc = []; for (let i=0; i<images.length; i+=2 )

     acc.push( __merge_2( images[i], images[i+1] ) )

  return recursive_merge( acc )

} // Todo: try converting to async queues as in [12].

function __merge_2( image1, image2 ) {

  return rapi.exec( arg => 

        merge_2_zbuf( arg.image1, arg.image2 ), { image1, image2 }) 

}

Fig.  2. Source code of interactive parallel rendering of cells (javascript). The system’s API is
provided via rapi variable.  Only codes important for showcasing main structure are provided.
An external visualization frontend is considered: it allows user to control camera in 3D space,
tracks it and sends ‘render’ requests, receives ‘image’ messages and displays it.

https://doi.org/10.14529/pct2022
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It is considered that cells that we have to render are distributed into  K parts and
stored in files named k.dat. The following is going on in the code:

1. The code starts with scheduling file load task for each block. As a result, an
array of promises of loaded blocks is stored in the blocks variable.

2. The code queries messages with render label. It is assumed that visualization
frontend issues such messages. 

3. When render message detected, the query callback is called and it starts par-
allel  rendering  process  by  calling __render function  for  each  block.  The
__render schedules render task to the system for parallel execution.  As a re-
sult, an array of promises is achieved and stored into images local variable.
These promises are considered to be fulfilled to rendered images of blocks in
the form (color-buffer,z-buffer), e.g. having both color and depth data.

4. Images promises array is passed to recursive_merge algorithm which in turn
schedules tasks to join images using sort-last method.

5. Final image is sent with message labeled final_image which is  queried and
displayed by visualization frontend.

Fig. 3 (left) displays sample output of developed application.

Fig. 3. Left: visual result of interactive parallel rendering of cells. A cube of size 1 is split into
50 parts having 109 cells in total. User may rotate view angle and thus change camera position
using mouse. After user change camera position, code sends “render” message and the cube
gets re-rendered. Right: visual debugging of used parallel rendering algorithm. Time goes from
up to down. Blue lines are tasks of loading blocks, red lines are tasks of block rendering. White
dots are tasks of images merge (actually they are lines too but perform too fast so appear as
dots). Task’s x location in a view corresponds it’s block number. Data dependencies between
tasks is shown using cyan lines. There are 8 runners shown on bottom plane, performing tasks.
Animation is available: youtu.be/XnV3l8hw8QE.

To debug parallel applications implemented within the suggested model, a task vi-
sualization method was created. It queries messages that schedule tasks to the system,
and also messages when task is assigned to a runner and when task is completed.
Then it  visualizes  ongoing processes  using synthetic  view in 3D space.  On fig.  3
(right) an output of such view is presented. The developed debugging method is itself
an online visualization of parallel algorithms working within the system.

https://youtu.be/XnV3l8hw8QE
https://doi.org/10.14529/pct2022
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8 Related Works

According to the aim of our project, we have to consider scientific advances in two
areas: online visualization and parallel computation technologies. Former nowadays
are mostly introduced by various institu systems. In the latter, our approach is near to
task-based parallelism and asynchronous many-task systems (AMT). Also, as we con-
sider visualization of scientific computations, we pay attention to existing parallel vi -
sualization areas, including parallel visualization-aimed processing and rendering.

Related AMT systems are:  Template Task Graphs [8]  and PaRSEC, HPX [11],
Charm++, Uintah, Kokkos, Legion, C++ Sender Library, LuNA[13], Dask, and Flyte.

AMT languages:  Linda,  Pythagoras functional-streaming parallel  language [12],
Chapel and X10, Cilk, T++, Val, Caper and partially Lingua Franca.

Insitu visualization projects:  ADIOS2,  Ascent,  Sensei,  Henson,  Damaris,  Libsim
(Visit institu component), Catalyst (Paraview insitu component).

Parallel visualization processing: Paraview’s data-server and Python-based visual-
ization pipeline programming, ScientificView parallel pre-post-processor [5].

Parallel rendering libraries: IceT (used by both Paraview and Visit for rendering),
VTK-M (parallel but single node only).

Our project differs from projects stated above in various details. To illustrate this,
let’s look on two advanced projects – HPX for computations and ADIOS2 for institu.

HPX system has a well-described model named ParalleX (for simplification we re-
fer it here HPX too). HPX is targeted both for single-node and multi-node (e.g. dis-
tributed) parallelism. Our model is primarily for multi-node. We rely on existing tech-
nologies for single-node parallelism (C++ standard parallelism, SYCL, etc). 

Both HPX and our model work with multi-node parallelism by allowing to run ac-
tions (HPX term, same as tasks in our terms) remotely. In such environment, a ques-
tion of load balancing occurs. Our implementation provides built-in load balancing.
HPX in turn demands user to control that aspect, telling where to run an action – on a
specific node (locality in HPX terms) or on some HPX component. User may receive
performance counters from nodes and so select best ones for ongoing actions.

Sometimes for task to perform, it needs a state existing in memory of a node. In
HPX, this accomplished by so called  components. These are like C++ classes, and
even allow migrations of component from node to node. To address components, ac-
tive global address space (AGAS) concept is used. HPX suggests to create compo-
nents on remote nodes, and  call component’s actions.

Our model reaches same purposes by means of needs (described in section 4.3). A
need may be thought as a part of component; each task have a specification of re -
quired needs and arguments. This allows our model to distribute tasks easily, because
it “migrate” needs automatically by recreating them on any desired nodes. However
need’s state doesn’t considered to be changed, and work with “state” assumes explicit
specification of input and output arguments of tasks.

HPX have various advanced features, for example C++ standard-based parallelism
implementation,  and  distributed  data  containers.  Our  model  doesn’t  provide  such
means. It  is  indeed assumed that these may be implemented by plugins and aside
projects, probably inter-operating in different programming languages.

https://hpx-docs.stellar-group.org/latest/html/manual/writing_distributed_hpx_applications.html
https://youtu.be/npufmMlGOoM?t=506
https://youtu.be/npufmMlGOoM?t=506
https://hpx-docs.stellar-group.org/latest/html/examples/accumulator.html
https://www.khronos.org/sycl/
https://www.diehlpk.de/blog/modern-cpp/
https://hpx-docs.stellar-group.org/latest/html/index.html
https://m.vtk.org/
https://gitlab.kitware.com/icet/icet
http://www.logos.vniief.ru/products/prepost/
https://docs.paraview.org/en/latest/Tutorials/SelfDirectedTutorial/batchPythonScripting.html
https://docs.paraview.org/en/latest/ReferenceManual/parallelDataVisualization.html
https://www.paraview.org/Wiki/ParaView/Catalyst/Overview
https://www.visitusers.org/index.php?title=Libsim_Batch
https://project.inria.fr/damaris/
https://github.com/henson-insitu/henson
https://sensei-insitu.org/
https://github.com/Alpine-DAV/ascent
https://adios2.readthedocs.io/en/latest/
https://www.lf-lang.org/
http://course-as.ru/co_caper.html
https://accu.org/journals/overload/31/174/overload174.pdf#page=12
http://skif.pereslavl.ru/psi-info/rcms/index.en.html
https://en.wikipedia.org/wiki/Cilk
http://x10-lang.org/
https://chapel-lang.org/
http://www.softcraft.ru/fppp/
http://en.wikipedia.org/wiki/Linda_(coordination_language)
https://flyte.org/
https://www.dask.org/
https://www.researchgate.net/publication/334828031_Automated_Construction_of_High_Performance_Distributed_Programs_in_LuNA_System
https://www.hpcwire.com/2022/12/05/new-c-sender-library-enables-portable-asynchrony/
https://legion.stanford.edu/
https://kokkos.org/
http://uintah.utah.edu/
https://charm.cs.uiuc.edu/
https://hpx-docs.stellar-group.org/latest/html/index.html
https://github.com/icldisco/parsec
https://www.youtube.com/watch?v=BOavGaSviqQ
https://github.com/TESSEorg/ttg
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Now we turn to compare with insitu framework ADIOS2. It is based on concept of
streams. Streams are established (between producer and consumers) and then running.
This provides maximum bandwidth with lowest latencies, but assumes that after es-
tablishing the connection a parties are running at fixed OS processes on fixed nodes.

In contrast, our model is designed to send “streams” of meta-data instead of data.
The data follows metadata only if required by consumer, and is not sent by default.
ADIOS2 users may implement the same by using 2 streams, one for meta-data and
one for heavy data. But we found it ergonomic to make this feature present by design.

Our model is not tied to particular OS processes or nodes, because it is task-based
(or even reaction-based, at first level). This allows automatic balancing the activities
on respond on event occurrences (such as a simulation thread produced new portion
of data). This in turn may introduce lags to processing.

But thanks to design of reactions implementation, our system allows to embed al-
gorithms right into event occurrence place. For example, it allows to inject data pro-
cessing  codes  right  into  simulation  processes.  The  same  effect  is  achieved  with
ADIOS2 operators and plugins. In both our and ADIOS2 cases, this looks like exter-
nal management of algorithms, performed dynamically.

Despite we look optimistic on our design decisions and their contrasts with pre-
sented projects, we think only the practical tasks could highlight best combinations.

9 Conclusion and Future Work

In the paper a specialized model for parallel computations is suggested. It is aimed for
online visualization, which assumes that visualization of computation is made during
that computation. This demand an ability for  inter-operation  with working scientific
simulation codes. Simulation codes have to pass data to visualization, and to receive
commands from it.

The model is based on concept of messages and reactions. Then, a concept of tasks
is added, which run concurrently. It was assumed that simulation software sends per-
iteration updates on it’s data using messages, and reacts to control commands. Then
visualization side reacts to data messages and processed it in aims of visualization.

However it was found inconvenient to express parallel algorithms of data process-
ing using reactions on messages. To overcome this, the concept of promises is added.

To pass  data from simulation to visualization using promises the following ap-
proach is suggested. On each computational iteration, simulation sends message with
meta-information about data being computed, represented as structure of promises ac-
cording to domain decomposition. Such structure or it parts or individual promises
then  may  be  easily  processed  by  parallel  visualization  algorithms.  Because  with
promises parallel algorithms are easily expressed by sequential algorithms.

Future work is currently seen as the following:
 Ability to specify actions of reactions and tasks for various programming

platforms.  It  will  allow to  achieve  inter-operation  of  system clients  pro-
grammed in various languages, and easier running tasks on accelerators. We
consider SYCL and Kokkos for the latter purpose.

https://adios2.readthedocs.io/en/latest/advanced/plugins.html#plugins
https://adios2.readthedocs.io/en/latest/
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 Suggested model is highly extensible. Provide some kind of plugin concept
to involve other people into the project, letting them add more features.

The global aim of the project is to suggest parallel computations methods produc-
tive for reasoning,  and to separate basics and higher-level. We are inspired for exam-
ple by models like CSP [9], AST [10], A-system vision [14] and others (like [12]).

Finally, we are going to achieve human-computer interactive supercomputing as
described by virtual test stands idea [15].

Author thanks colleagues and reviewers for discussions on the presented work.
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