Компьютерные метафоры и проектирование систем научной визуализации

В.Л. Авербух ИММ УрО РАН, Уральский Государственный Университет Екатеринбург

averbukh@imm.uran.ru

Визуализация понимается как зримое представление ментальных моделей

Можно выделить три функции визуализации:

- иллюстративную;
- ◆ коммуникативную;
- ◆ когнитивную.

Эти же функции присущи как компьютерной, так и традиционной, "бескомпьютерной" визуализации, которая существовала задолго до появления современной вычислительной техники.

Под компьютерной визуализацией понимается методика перевода абстрактных представлений об объектах в геометрические образы, что дает возможность исследователю наблюдать результаты компьютерного моделирования явлений и процессов.

Визуализация, представляя результаты вычислений, обеспечивает интерпретацию и анализ полученных данных.

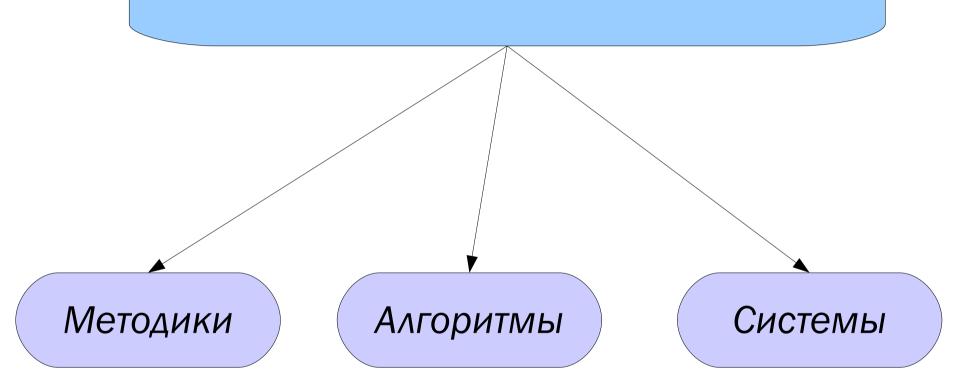
Предпосылки формирования дисциплины "компьютерная визуализация":

- ◆ интеллектуальные предпосылки, то есть наличие богатой традиции визуальных методов представления данных;
- потребности, возникшие в связи с появлением суперЭВМ и необходимостью анализа и интерпретации огромных объемов данных;
- техническая возможность, основанная на создании мощных аппаратных и программных средств машинной графики.

Подобласти компьютерной визуализации:

- ♦ научная визуализация;
- ◆визуализация программного обеспечения;
- •информационная визуализация.

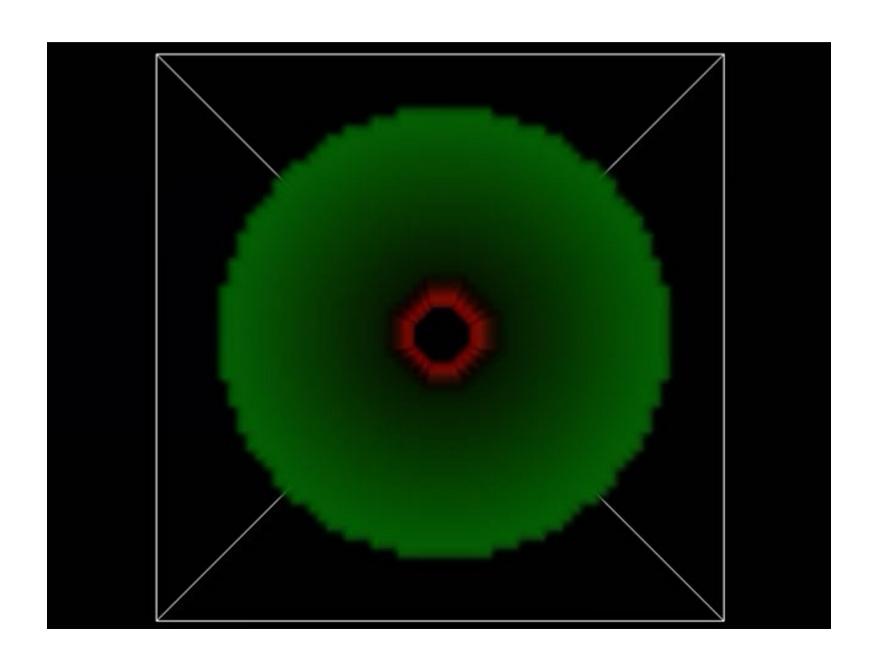
Аспекты разработки систем компьютерной визуализации


- собственно компьютерная графика,
- •инженерия программного обеспечения
- ◆набор "человеческих", когнитивных факторов, связанных с проблематикой мышления и восприятия пользователя.

Аппаратура

Программное обеспечение

Программное обеспечение компьютерной графики

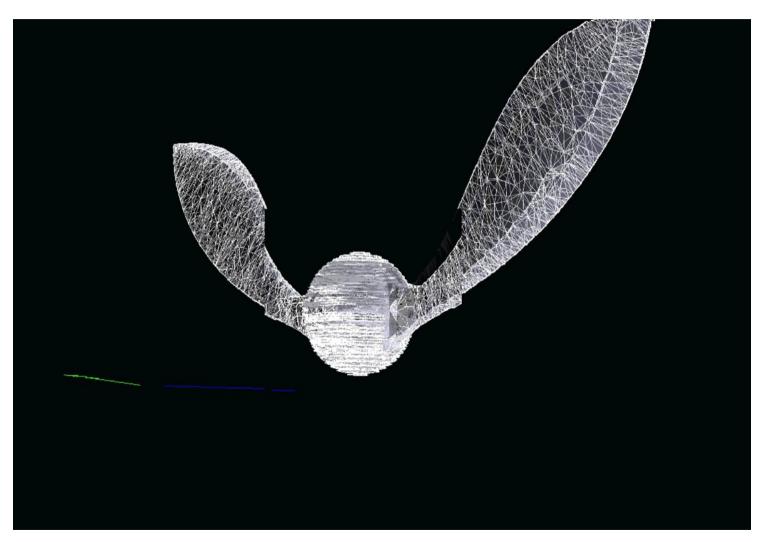

Инженерия программного обеспечения

- ▶Программное обеспечение интерактивной визуализации параллельных вычислений
- Онлайн и удаленная визуализация

Две тенденции развития систем визуализаци

С одной стороны — разработка универсальных средств визуализации, а с другой — специализация по всем направлениям, вплоть до создания специальных графических станций с реализацией для данного случая графическим алгоритмическим и программным обеспечением.

Пример использования воксельной графики


Система визуализации структуры области достижимости в задаче оптимального управления

Источник постановки: поиск областей достижимости в одной из задач оптимального управления. Программный комплекс состоит из набора утилит для работы с огромным облаком точек и его последующей визуализации.

Конвейер визуализации:

- ◆обработка исходных bitmap-файлов;
- ♦ вычисление освещенности;
- ◆конвертирование в воксельный формат и создание структур хранения сцены;
- ◆сглаживание воксельных объектов;
- ◆ конвертирование в полигональный формат.

Восстановление полигональной модели по сеточным данным

Объем исходного файла составляет примерно 6,5 миллионов точек. Графический объект состоит из около 40 000 полигонов

Семиотика

Возникает необходимость привлечения понятийного аппарата семиотики.

Необходим анализ знаковой природы визуализации и вычленение языка визуализации.

Язык визуализации разворачивается как набор видов отображения, связанных с сущностями прикладной области.

Виды *отображения* понимаются как методики визуального представления данных. Вид отображения может рассматриваться в качестве формализованного порождения метафоры визуализации.

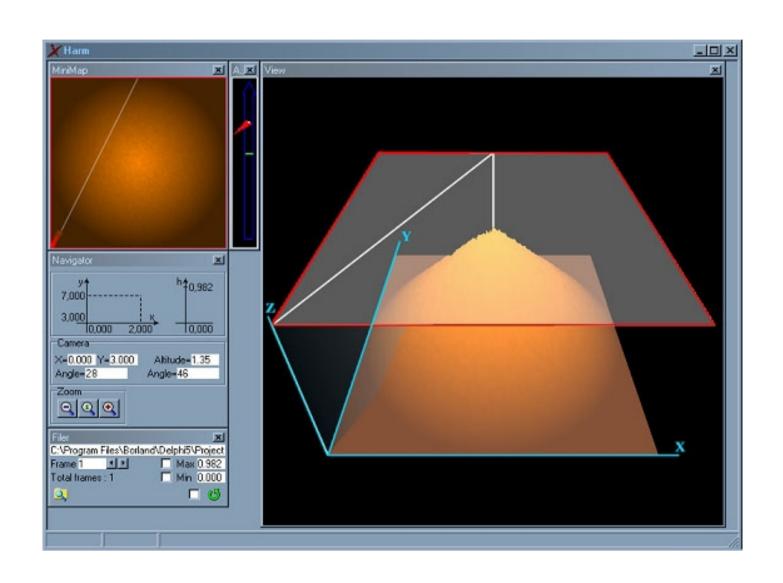
Компьютерная метафора

- → Метафора визуализации это метафора, помогающая восприятию визуальных образов;
- → Метафора интерфейса это метафора, помогающая взаимодействию с объектами и/или манипуляции ими;
- Системная метафора это метафора, помогающая организации процесса проектирования.

Метафора визуализации

- Метафора задаёт контекст, помогающий правильной интерпретации элементов данного языка визуализации.
- Метафора визуализации обеспечивает понимание отображаемых сущностей прикладной области, а также участвует в создании новых сущностей на базе внутренней логики самой метафоры.
- Поиск главной идеи визуализации (то есть, её метафоры) важен на этапе проектирования системы.

Схема предварительного анализа в процессе проектирования специализированных и персонализированных систем компьютерной визуализации:

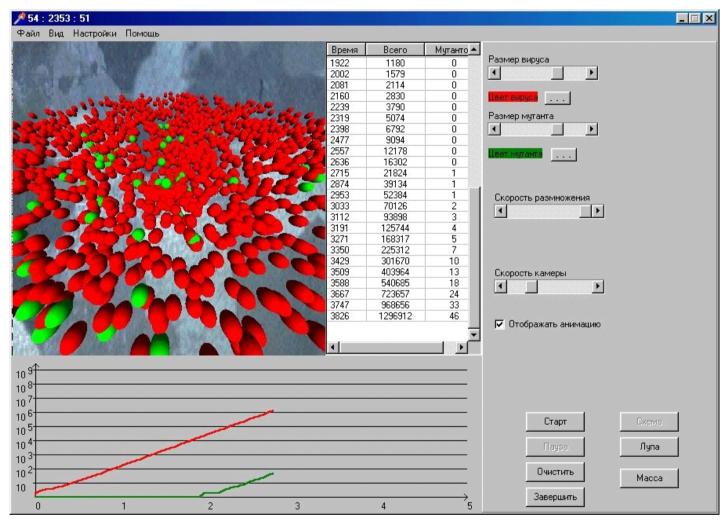

- 1. Определение предмета визуализации.
- 2. Описание цели и задачи визуализации.
- 3. Описание соответствующей предметной области.
- 4. Выявление образности, характерной для данной предметной области (естественной и привычной).
- 5. Выявление научных метафор, присущих данной предметной области.
- 6. Описание пользователя будущей системы и уяснение характерной для него ментальной модели данной предметной области.

Основные позиции проектирования и роли участников процесса проектирования и реализации систем

Рассматриваются: заказчик-пользователь, проектировщик визуализации, специалист в методах компьютерной графике и человеко-компьютерного взаимодействия, системный программист.

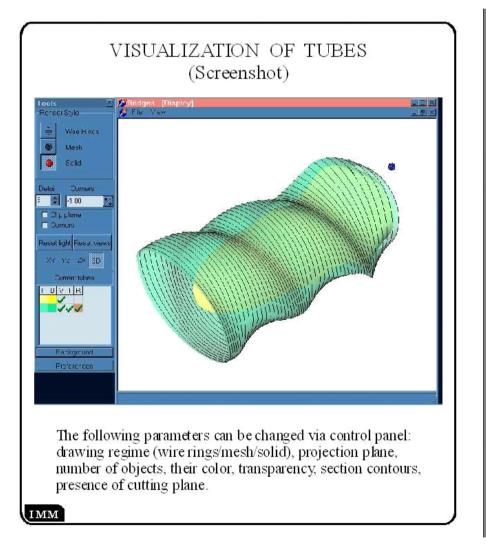
Основные позиции схемы проектирования специализированных систем визуализации включают: решаемую проблему, пользователя, для которого предполагается построить средства визуализации, программу, решающую данную проблему, образность визуализации и методы взаимодействия, методики генерации и вывода графики, системные вопросы.

Специализированная система научной визуализации для модели загрязнения окружающей среды



Специализированная система научной визуализации для модели загрязнения окружающей среды

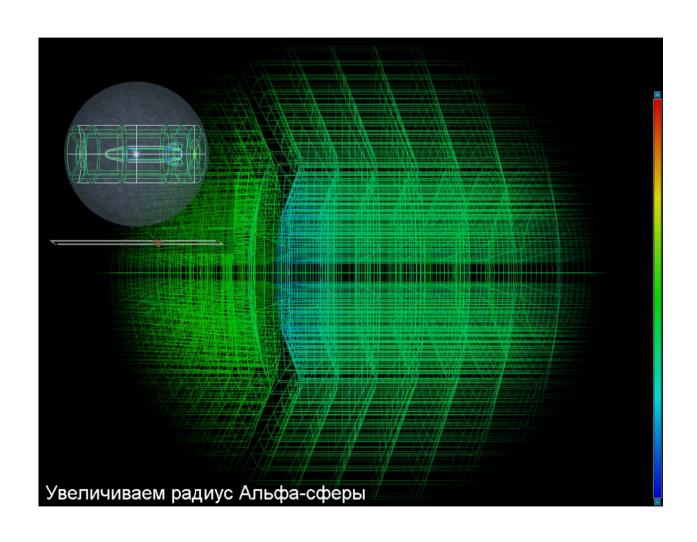
Первоначальная задача на визуализацию предполагала использование образности, связанной с источником моделирования.


Пользователями системы являются специалисты в области математического моделирования, поскольку данная научная проблема связана не столько с экологией того или иного заводского посёлка, сколько с самой моделью загрязнения.

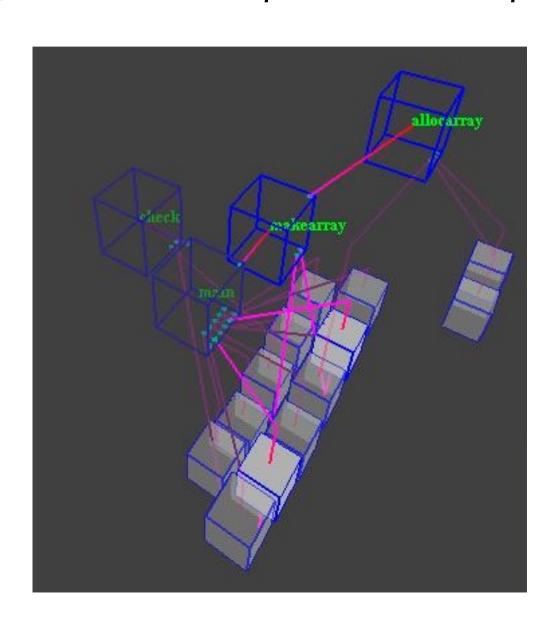
Визуализация модели размножения и мутаций вирусов

Предметом визуализации являлся сам процесс размножения и мутации, данные о котором были получены из моделирующей программ.

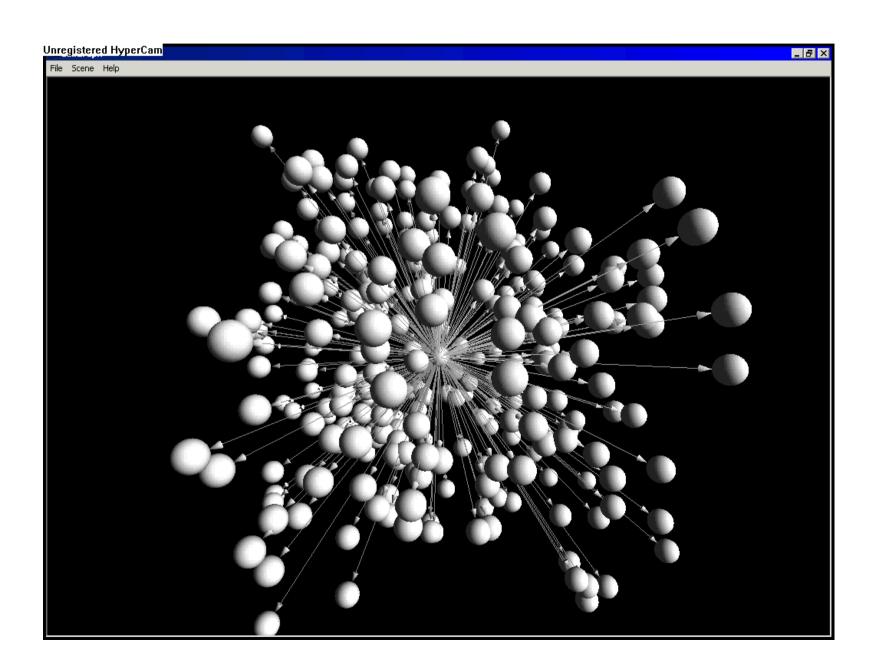
Системы визуализации для задач оптимального управления и дифференциальных игр



Большое внимание уделяется именно особенностям полученных решений, а также различным вырожденным случаям.


Моделирование распространения возбуждения в камере сердца

Интересный опыт связан с разработкой визуальной системы поддержки модели распространения возбуждения в камере сердца. В основе работы лежит предложенная специалистами научная метафора (базовая идея) представления проводящей системы миокарда в виде множества связанных между собой клеток, которые передают друг другу управляющие сигналы. На базе этого представления удалось смоделировать патологии типа тахиокардии и эстрасистолий.


Визуализация сеток

Визуализация отладки/настройки производительности параллельных программ

Метафора молекулы

Интерпретация визуализации и интерактивных манипуляций, построенных на базе данной метафоры, восстанавливает (или создает заново) у пользователя некоторые ментальные структуры, в которых представляется картина явлений.

Метафора конструирует для пользователя некоторую реальность (часто при помощи "волшебных" объектов, понятий или операций.)

Логика этой новой реальности с одной стороны отражает идеи пользователя об интерфейсе и объектах моделируемого мира, а с другой — должна совпадать (или быть близкой) с логикой развития процессов и изменения объектов в первоначальной прикладной области, включая логику деятельности самого пользователя.