Parallel software debugging and time tuning are maybe the most actual tasks for software developers. These tasks were attended by large scientific centers at 80-th and 90-th years of XX century. There was created a number of powerful debugging tools. But this problem was not be resolved at there. And now we should state some stagnation tendency in this branch.

There are three methods how to create debugger. Classic parallel debugger is like sequential debugger, more correctly it could be said as inheritance. So debugging information visualization could be called as debugger extension or add-on. Traditional approach to study parallel program execution is based on statement model and execution tracing. So visualization is quite as trace player or explorer. But only one method to visualize execution here is animation by highlighting source code lines. This method is easy to illustrate execution, but source code is statical entity and trace playing could show dynamics only by human time sense. Also such approach hides execution dependency on input data, because we can observe in one time one execution (on one input data).

If somebody tries to study real program execution dynamics, it turns out complication and huge volume of data. Works for this approach as usually deal with small source code fragments and rarely concern time factor.

We should note that statement sequence is not very interesting entity for visualization, moreover it is hard to understand casual dependencies about algorithm when looking at code lines. Root of this trouble may be is one of fundamental visualization questions – how to entirely show dynamics. And this question is not quietly solved up to now.

Про чисто визуальные отладчики пока ниасилил...

We should say that we need to find new approaches to debug tools development. As one of new ideas, offered by authors, we propose reverse analysis for chain of causation. Another variant – how to understandably show dynamics-- is called trajectory approach for execution study. Program, when executing, goes along chain of states in full state space, originated by all program variables. So we can say that execution program is trajectory in this space. Trajectory has start point and final point. Trajectory dependents on input data, and, having set of start points, we got bundle of trajectories. So we can state that encoded algorithm produces bunch of trajectories which are images of algorithm (code) execution.

