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Problem

ẋ = f(t, x, u, v), t ∈ [t0, ϑ0], x ∈ Rn, u ∈ P, v ∈ Q.

The variable u denotes a control of the first palyer.
The variable v denotes a control of the second player.
The first player strives to maximize σ1(x(ϑ0)).
The second player strives to maximize σ2(x(ϑ0)).
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Conditions

1 P and Q are compact sets.
2 f is continuous, locally lipschitzian with respect to x;
f satisfies the sublinear growth condition with respect to x.

3 Functions σ1, σ2 are continuous.
4 The Isaacs condition holds.
5 The sets {f(t, x, u, v) : u ∈ P} are convex for all

(t, x) ∈ [t0, ϑ0]× Rn, v ∈ Q.
6 The sets {f(t, x, u, v) : v ∈ Q} are convex for all

(t, x) ∈ [t0, ϑ0]× Rn, u ∈ P .

If conditions 4–6 are not fulfilled, one can achieve them by using
the slide regimes.



PIM for
nonzero-sum

games

Yurii
Averboukh

Preliminaries

The main
result

Equivalent
Formulations

System of HJ
Equations

Example

Strategies [N.N. Krasovskii, A.I. Subbotin]

Positional Strategies
Strategy of the first player is U = (u(t, x, ε), β1(ε1)). Here
u(t, x, ε1) is a function of position and precision parameter ε1,
β2(ε) is upper bound of fineness of partitions.
Strategy of the second player is V = (v(t, x, ε2), β2(ε2)).

Control formation
The first player chooses partition ∆1 = {t′j}mk=0,
(t′j+1 − t′j) ≤ β1(ε1). u(t) = u(t′j , x[t′j ], ε1), t ∈ [t′j , t

′
j+1).

The second player chooses partition ∆2 = {t′′k}lk=0,
(t′′k+1 − t′′k) ≤ β2(ε2). v(t) = v(t′′k , x[t′′k ], ε2), t ∈ [t′′k , t

′′
k+1).
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Bundles of Motions [Kleimenov, 1993],
[N.N. Krasovskii, A.I. Subbotin]

Step-by-step motion x[t, t∗, x∗;U, ε1,∆1;V, ε2,∆2].
The set of step-by-step motions X(t∗, x∗;U, V, ε1, ε2).
Consistent motion ε1 = ε2.
The set of consistent step-by-step motions Xc(t∗, x∗;U, V, ε).
The set of ideal motions X(t∗, x∗;U, V ).
The set of consistent ideal motions Xc(t∗, x∗;U, V ).

The function x[·] : [t∗, ϑ0]→ Rn, x[t∗] = x∗, is called ideal motion
if there exist {(tk, xk)}, {εk1}, {εk2}, ∆k

1 , ∆k
2 such that

fineness(∆k
i ) ≤ βi(εki ) εki → 0, as k →∞, and

x[·, tk, xk;U, εk1 ,∆
k
1 ;V, εk2 ,∆

k
2 ]⇒ x[·], k →∞.
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Feedback Nash Equilibrium [Kleimenov, 1993]

The pair of strategies (UN , V N ) is called Nash equilibrium
solution at the position (t∗, x∗) if the following inequalities hold:

max{σ1(x[ϑ0]) : x[·] ∈ X(t∗, x∗, U, V N )} ≤
≤ min{σ1(xc[ϑ0]) : xc[·] ∈ Xc(t∗, x∗, UN , V N )}.

max{σ2(x[ϑ0]) : x[·] ∈ X(t∗, x∗, UN , V )} ≤
≤ min{σ2(xc[ϑ0]) : xc[·] ∈ Xc(t∗, x∗, UN , V N )}.
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Feedback Nash Equilibrium

The pair (σ1(x[ϑ0]), σ2(x[ϑ0])) for x[·] ∈ Xc(t∗, x∗;UN , V N ) is
called N -value.
Denote the set of N -values at the position (t∗, x∗) by N (t∗, x∗).

Property [Kleimenov, 1993]: The set N (t∗, x∗) is nonempty. Also
the set N (t∗, x∗) can contain more than one pair.
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Auxiliary constructions

Let U denote the set of all measurable function from [t0, ϑ0] to P ;
let V denote the set of all measurable function from [t0, ϑ0] to Q.
Denote the solution of

ẋ = f(t, x, u(t), v(t)), x(t∗) = x∗

by x(·, t∗, x∗, u, v).
We consider elements of P and Q as constant controls.
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Programmed absorption operators,
[Chentsov, 1975], [Chentsov, 1976]

Let c(t, x) ∈ C([t0, ϑ0]× Rn).
Definition.

A1[c](t, x) , max
u∈P

max
τ∈[t,ϑ0]

min
v∈V

c(τ, x(τ, t, x, u, v)),

A2[c](t, x) , max
v∈Q

max
τ∈[t,ϑ0]

min
u∈U

c(τ, x(τ, t, x, u, v)).

Auxiliary definition.
Let (t∗, x∗) ∈ [t0, ϑ0]× Rn. The set of solutions of differential
inclusion

ẋ ∈ co{f(t, x, u, v) : u ∈ P, v ∈ Q}, x(t∗) = x∗

denote by Sol(t∗, x∗).
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Theorem 1

The set of N -values at position (t∗, x∗) is equal to the set
{(c1(t∗, x∗), c2(t∗, x∗))} where the functions c1(t, x) and c2(t, x)
are continuous and satisfy the following conditions:

(C1) c1(ϑ0, ·) = σ1(·), c2(ϑ0, ·) = σ2(·);

(C2) A1[c1] = c1; A2[c2] = c2;

(C3) there exists y[·] ∈ Sol(t∗, x∗) such that

c1(t, y(t)) = c1(t∗, x∗), c2(t, y(t)) = c2(t∗, x∗) ∀t ∈ [t∗, ϑ0].
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Proof

Sufficiency. The penalty strategies are used.
Necessity. Let (J1, J2) ∈ N (t∗, x∗).
Put for i = 1, 2

c∗i (t, x) , max
u∈P

min
v∈V

σ1(t∗, x(t∗, t, x, u, v)),

c+i (t, x) , sup
u∈U,v∈V

σi(x(ϑ0, t, x, u, v)),

c0i (t, x) , max{c∗i (t, x),min{Ji, c+i (t, x)}}, i = 1, 2,

cki , Ai[c
k−1
i ], i = 1, 2, k ∈ N.

ci(t, x) , lim
k→∞

cki (t, x).

The pair (c1, c2) satisfies the condition (C1)–(C3) at the position
(t∗, x∗).
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Equivalent Formulation of Condition (C2)

The function c1 is upper minimax (viscosity) solution of
equation

∂c

∂t
+H1(t, x,∇c) = 0.

The function c2 is upper minimax (viscosity) solution of
equation

∂c

∂t
+H2(t, x,∇c) = 0.

Here the function H1 is defined by the rule

H1(t, x, s) , max
u∈P

min
v∈Q
〈s, f(t, x, u, v)〉,

the function H2 is defined by the rule

H1(t, x, s) , max
v∈Q

min
u∈P
〈s, f(t, x, u, v)〉.

The definitions of minimax solution are given in [Subbotin, 1995].
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Equivalent Formulation of Condition (C3)

There exists closed set E ⊂ [t0, ϑ0]× Rn, (t∗, x∗) ∈ E, such that
the graph gr(c1, c2;E) is weakly invariant under differential
inclusion ẋ

ż1
ż2

 ∈ F∗(t, x) , co


 f(t, x, u, v)

0
0

 : u ∈ P, v ∈ Q

 .

Here gr(c1, c2;E) denotes the graph of restriction of (c1, c2) on E.

gr(c1, c2;E) , {(t, x, c1(t, x), c2(t, x)) : (t, x) ∈ E}.
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Equivalent Formulation of Condition (C3)

There exists closed set E ⊂ [t0, ϑ0]× Rn, (t∗, x∗) ∈ E, such that
for all (t, x, z1, z2) ∈ gr(c1, c2)[

coDt(gr(c1, c2;E))(t, x, z1, z2)
]
∩ F∗(t, x) 6= ∅.

Here Dt(gr(c1, c2;E))(t, x, z1, z2) is right-side derivative of set
gr(c1, c2;E) for (t, x, z1, z2) [Guseinov, Subbotin, Ushakov]:

Dt(gr(c1, c2;E))(t, x, z1, z2) =
{

(g, ζ1, ζ2) : (g, ζ1, ζ2) :

lim inf
δ↓0

d((x+ δg, z1 + δζ1, z2 + δζ2), gr(c1, c2;E; t))
δ

= 0
}
,

gr(c1, c2;E; t) , {(x, z1, z2) : (t, x, z1, z2) ∈ gr(c1, c2;E)}.
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System of HJ Equations [Basar & Olsder]

Let γ1, γ2 : [t0, ϑ0]× Rn → R satisfy the following conditions

γi(ϑ0, ·) = σi(·), i = 1, 2

∂γi(t, x)
∂t

+
〈
∂γi(t, x)
∂x

, f(t, x, û(t, x), v̂(t, x))
〉

= 0, i = 1, 2.

Here〈
∂γ1(t, x)
∂x

, f(t, x, û(t, x), v̂(t, x))
〉

=

= max
u∈P

〈
∂γ1(t, x)
∂x

, f(t, x, u, v̂(t, x))
〉
,

〈
∂γ2(t, x)
∂x

, f(t, x, û(t, x), v̂(t, x))
〉

=

= max
v∈P

〈
∂γ2(t, x)
∂x

, f(t, x, û(t, x), v)
〉
.
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Theorem 2

If functions γi, i = 1, 2 are continuously differentiable and provide
the solution of system of Hamilton-Jacobi equations then for all
(t∗, x∗) ∈ [t0, ϑ0]× Rn the pair of functions (γ1, γ2) satisfies the
conditions (C1)–(C3).
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Example

Differential game
t ∈ [0, 1], u, v ∈ [−1, 1] {

ẋ = u
ẏ = v.

Functionals
σ1(x, y) , −|x− y|, σ2(x, y) , y.
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The fixed point of operator A1

Denote by c�1 the least function satisfying the conditions
c1(1, x, y) = σ1(x∗, y∗) = −|x− y|, A1[c1] = c1.
The Programmed Iterations Methood gives that

c�1 = −|x∗ − y∗|.

Let
c+1 (t, x∗, y∗) ,

, max{σ1(x[1], y[1]) : (x[·], y[·]) ∈ Sol(t, x∗, y∗)} =
= min{−|x∗ − y∗|+ 2(1− t), 0}.

The functions
cβ1 (t, x∗, y∗) = −|x∗ − y∗|+ β(1− t)

for β ∈ [0, c+1 (1, x∗, y∗)− c�1(1, x∗, y∗)] satisfy the conditions:
cβ1 (1, x, y) = σ1(x, y) = −|x− y|, A1[cβ1 ] = cβ1 .
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The fixed point of operator A1

Conditions c1(1, x∗, y∗) = σ1(x∗, y∗) and A1[c1] = c1 imply that
c1(t, x∗, y∗) ∈ [c�1(t, x∗, y∗), c+1 (t, x∗, y∗)].

Moreover

{cβ1 (t, x∗, y∗) : β ∈ [0, c+1 (1, x∗, y∗)− c�1(1, x∗, y∗)]} =

= [c�1(t, x, y), c+1 (t, x, y)].
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The fixed point of operator A2

Only the function
c∗2(t, x, y) = y∗ + (1− t)

satisfies the conditions (C1) and (C2): c∗2(1, x, y) = y, A2[c∗2] = c∗2.
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The set of N -values

Case x∗ ≤ y∗. If pair (c1, c∗2) satisfies the condition (C3) at the
position (t, x∗, y∗) then one can directly shows that
c1 = −|x∗ − y∗|.
Therefore,

N (t, x∗, y∗) = {(−|x∗ − y∗|, y∗ + (1− t))}.

Case x∗ > y∗. If β ∈ [0, c+1 (1, x∗, y∗)− c�1(1, x∗, y∗)] then the pair
(cβ1 , c2) satisfies the condition (C3) at the position (t, x∗, y∗).
Therefore,

N (t, x∗, y∗) =
= [−|x∗ − y∗|,min{0,−|x∗ − y∗|+ 2(1− t)}]× {y∗ + (1− t)}.



PIM for
nonzero-sum

games

Yurii
Averboukh

Preliminaries

The main
result

Equivalent
Formulations

System of HJ
Equations

Example

The System of HJ Equations Approach

{
∂γ1
∂t + ∂γ1

∂x u∗(t, x, y) + ∂γ1
∂y v∗(t, x, y) = 0

∂γ2
∂t + ∂γ2

∂x u∗(t, x, y) + ∂γ2
∂y v∗(t, x, y) = 0.

Boundary conditions: γ1(1, x, y) = −|x− y|, γ2(1, x, y) = y.

Here u∗(t, x, y) and v∗(t, x, y) satisfy the conditions

∂γ1

∂x
u∗(t, x, y) = max

u∈P

[
∂γ1

∂x
u

]
,
∂γ1

∂x
v∗(t, x, y) = max

u∈P

[
∂γ1

∂x
v

]
.

There are no classical solution of this system.
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The System of HJ Equations Approach

The minimax (viscosity in sense of Crandall and Lions) solution is
unique. It is equal to

γ1(t, x, y) =

 x− y, x ≤ y,
−x+ y + 2(1− t), x > y,−x+ y + 2(1− t) < 0,
0, x > y,−x+ y + 2(1− t) ≥ 0

γ2(t, x, y) = c∗2(t, x, y) = y + (1− t).

Property:
γ1(t, x, y) = max{J1 : ∃J2(J1, J2) ∈ N (t, x, y)}.
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