FNE and PIM

Averboukh

Preliminaries

The mair result

Equivalent Formulations

System of H.

Example

Feedback Nash Equilibrium and Constructions of Programmed Iteration Method

Yurii Averboukh

Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia ayv@imm.uran.ru

> The International Conference on Game Theory and Management St. Petersburg, Russia, June 24-26, 2009

Outline

FNE and PIM

rurii Averbouki

Preliminarie

The main result

Equivalent Formulations

System of HJ Equations

Exampl

- Preliminaries
- 2 The main result
- 3 Equivalent Formulations
- Comparison with System of HJ Equations Approach
- **5** Example

Problem

FNE and PIM

Yurii Averboukl

Preliminaries

The mair result

Equivalent Formulation

System of HJ

_q.......

$$\dot{x} = f(t, x, u, v), \quad t \in [t_0, \vartheta_0], \quad x \in \mathbb{R}^n, \quad u \in P, \quad v \in Q.$$

- \blacksquare The variable u denotes a control of the first palyer.
- lacksquare The variable v denotes a control of the second player.
- The first player strives to maximize $\sigma_1(x(\vartheta_0))$.
- The second player strives to maximize $\sigma_2(x(\vartheta_0))$.

Conditions

FNE and PIM

Yurii Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ

Equations

- \blacksquare P and Q are compact sets.
- $\mathbf{2}$ f is continuous, locally lipschitzian with respect to x; f satisfies the sublinear growth condition with respect to x.
- **3** Functions σ_1 , σ_2 are continuous.
- 4 The Isaacs condition holds.
- The sets $\{f(t, x, u, v) : u \in P\}$ are convex for all $(t, x) \in [t_0, \vartheta_0] \times \mathbb{R}^n, v \in Q$.
- The sets $\{f(t, x, u, v) : v \in Q\}$ are convex for all $(t, x) \in [t_0, \vartheta_0] \times \mathbb{R}^n, u \in P$.

If conditions 4-6 are not fulfilled, one can achieve them by using the slide regimes.

Strategies [N.N. Krasovskii, A.I. Subbotin]

FNE and PIM

Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ Equations

Equations

Positional Strategies

- Strategy of the *first* player is $U = (u(t, x, \varepsilon), \beta_1(\varepsilon_1))$. Here $u(t, x, \varepsilon_1)$ is a function of position and precision parameter ε_1 , $\beta_2(\varepsilon)$ is upper bound of fineness of partitions.
- Strategy of the second player is $V = (v(t, x, \varepsilon_2), \beta_2(\varepsilon_2))$.

Control formation

- The first player chooses partition $\Delta_1 = \{t'_j\}_{k=0}^m$, $(t'_{j+1} t'_j) \leq \beta_1(\varepsilon_1)$. $u(t) = u(t'_j, x[t'_j], \varepsilon_1)$, $t \in [t'_j, t'_{j+1})$.
- The second player chooses partition $\Delta_2 = \{t_k''\}_{k=0}^l$, $(t_{k+1}'' t_k'') \leq \beta_2(\varepsilon_2)$. $v(t) = v(t_k'', x[t_k''], \varepsilon_2)$, $t \in [t_k'', t_{k+1}'']$.

Bundles of Motions [Kleimenov, 1993], [N.N. Krasovskii, A.I. Subbotin]

FNE and PIM

Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ

Equations

- Step-by-step motion $x[t, t_*, x_*; U, \varepsilon_1, \Delta_1; V, \varepsilon_2, \Delta_2]$.
- The set of step-by-step motions $X(t_*, x_*; U, V, \varepsilon_1, \varepsilon_2)$.
- Consistent motion $\varepsilon_1 = \varepsilon_2$.
- The set of consistent step-by-step motions $X^c(t_*, x_*; U, V, \varepsilon)$.
- The set of ideal motions $X(t_*, x_*; U, V)$.
- The set of consistent ideal motions $X^c(t_*, x_*; U, V)$.

The function $x[\cdot]:[t_*,\vartheta_0]\to\mathbb{R}^n,\,x[t_*]=x_*,$ is called *ideal motion* if there exist $\{(t_k,x_k)\},\,\{\varepsilon_1^k\},\,\{\varepsilon_2^k\},\,\Delta_1^k,\,\Delta_2^k$ such that fineness $(\Delta_i^k)\le\beta_i(\varepsilon_i^k)\,\,\varepsilon_i^k\to 0,$ as $k\to\infty,$ and

$$x[\cdot, t_k, x_k; U, \varepsilon_1^k, \Delta_1^k; V, \varepsilon_2^k, \Delta_2^k] \rightrightarrows x[\cdot], \quad k \to \infty.$$

Feedback Nash Equilibrium [Kleimenov, 1993]

FNE and PIM

Yurii Averboukl

Preliminaries

The mair result

Equivalent Formulations

System of H

Example

The pair of strategies (U^N, V^N) is called Nash equilibrium solution at the position (t_*, x_*) if the following inequalities hold:

$$\max\{\sigma_{1}(x[\vartheta_{0}]) : x[\cdot] \in X(t_{*}, x_{*}, U, V^{N})\} \leq \\ \leq \min\{\sigma_{1}(x^{c}[\vartheta_{0}]) : x^{c}[\cdot] \in X^{c}(t_{*}, x_{*}, U^{N}, V^{N})\}.$$

$$\max\{\sigma_{2}(x[\vartheta_{0}]) : x[\cdot] \in X(t_{*}, x_{*}, U^{N}, V)\} \leq$$

$$\leq \min\{\sigma_2(x^c[\vartheta_0]) : x^c[\cdot] \in X^c(t_*, x_*, U^N, V^N)\}.$$

Feedback Nash Equilibrium

FNE and PIM

Yurii Averboukl

Preliminaries

The mair result

Equivalent Formulations

System of HJ Equations

Equations

Examp

The pair $(\sigma_1(x[\vartheta_0]), \sigma_2(x[\vartheta_0]))$ for $x[\cdot] \in X^c(t_*, x_*; U^N, V^N)$ is called N-value.

Denote the set of N-values at the position (t_*, x_*) by $\mathcal{N}(t_*, x_*)$.

Property [Kleimenov, 1993]: The set $\mathcal{N}(t_*, x_*)$ is nonempty. Also the set $\mathcal{N}(t_*, x_*)$ can contain more than one pair.

Auxiliary constructions

FNE and PIM

The main

Let \mathcal{U} denote the set of all measurable function from $[t_0, \vartheta_0]$ to P; let \mathcal{V} denote the set of all measurable function from $[t_0, \vartheta_0]$ to Q. Denote the solution of

$$\dot{x} = f(t, x, u(t), v(t)), \quad x(t_*) = x_*$$

by $x(\cdot, t_*, x_*, u, v)$.

We consider elements of P and Q as constant controls.

Programmed absorption operators, [Chentsov, 1975], [Chentsov, 1976]

FNE and PIM

Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ Equations

Equations

 $_{
m Examp}$

Let $c(t,x) \in C([t_0,\vartheta_0] \times \mathbb{R}^n)$.

Definition.

$$A_1[c](t,x) \triangleq \max_{u \in P} \max_{\tau \in [t,\vartheta_0]} \min_{v \in \mathcal{V}} c(\tau, x(\tau,t,x,u,v)),$$

$$A_2[c](t,x) \triangleq \max_{v \in Q} \max_{\tau \in [t,\vartheta_0]} \min_{u \in \mathcal{U}} c(\tau, x(\tau,t,x,u,v)).$$

Auxiliary definition.

Let $(t_*, x_*) \in [t_0, \vartheta_0] \times \mathbb{R}^n$. The set of solutions of differential inclusion

$$\dot{x} \in \text{co}\{f(t, x, u, v) : u \in P, v \in Q\}, \ x(t_*) = x_*$$

denote by $Sol(t_*, x_*)$.

Theorem 1

FNE and PIM

Yurii Averboukl

Preliminarie

The main result

Equivalent Formulations

System of HJ

Equations

The set of N-values at position (t_*, x_*) is equal to the set $\{(c_1(t_*, x_*), c_2(t_*, x_*))\}$ where the functions $c_1(t, x)$ and $c_2(t, x)$ are continuous and satisfy the following conditions:

(C1)
$$c_1(\vartheta_0,\cdot) = \sigma_1(\cdot), c_2(\vartheta_0,\cdot) = \sigma_2(\cdot);$$

(C2)
$$A_1[c_1] = c_1; A_2[c_2] = c_2;$$

(C3) there exists $y[\cdot] \in Sol(t_*, x_*)$ such that

$$c_1(t, y(t)) = c_1(t_*, x_*), \quad c_2(t, y(t)) = c_2(t_*, x_*) \ \forall t \in [t_*, \vartheta_0].$$

Proof

FNE and PIM

Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ Equations

2444410113

Sufficiency. The penalty strategies are used.

Necessity. Let $(J_1, J_2) \in \mathcal{N}(t_*, x_*)$.

Put for i = 1, 2

$$c_i^*(t, x) \triangleq \max_{u \in P} \min_{v \in \mathcal{V}} \sigma_1(t_*, x(t_*, t, x, u, v)),$$

$$c_i^+(t,x) \triangleq \sup_{u \in \mathcal{U}, v \in \mathcal{V}} \sigma_i(x(\vartheta_0, t, x, u, v)),$$

$$c_i^0(t, x) \triangleq \max\{c_i^*(t, x), \min\{J_i, c_i^+(t, x)\}\}, \quad i = 1, 2,$$

$$c_i^k \triangleq A_i[c_i^{k-1}], \quad i = 1, 2, \quad k \in \mathbb{N}.$$

$$c_i(t,x) \triangleq \lim_{k \to \infty} c_i^k(t,x).$$

The pair (c_1, c_2) satisfies the condition (C1)–(C3) at the position (t_*, x_*) .

Equivalent Formulation of Condition (C2)

FNE and PIM

Equivalent Formulations

The function c_1 is upper minimax (viscosity) solution of equation

$$\frac{\partial c}{\partial t} + H_1(t, x, \nabla c) = 0.$$

■ The function c_2 is upper minimax (viscosity) solution of equation

$$\frac{\partial c}{\partial t} + H_2(t, x, \nabla c) = 0.$$

Here the function H_1 is defined by the rule

$$H_1(t, x, s) \triangleq \max_{u \in P} \min_{v \in Q} \langle s, f(t, x, u, v) \rangle,$$

the function H_2 is defined by the rule

$$H_1(t, x, s) \triangleq \max_{v \in Q} \min_{u \in P} \langle s, f(t, x, u, v) \rangle.$$

The definitions of minimax solution are given in [Subbotin, 1995].

Equivalent Formulation of Condition (C3)

FNE and PIM

Equivalent Formulations

There exists closed set $E \subset [t_0, \vartheta_0] \times \mathbb{R}^n$, $(t_*, x_*) \in E$, such that the graph $gr(c_1, c_2; E)$ is weakly invariant under differential inclusion

$$\begin{pmatrix} \dot{x} \\ \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} \in \mathcal{F}^*(t,x) \triangleq \operatorname{co} \left\{ \begin{pmatrix} f(t,x,u,v) \\ 0 \\ 0 \end{pmatrix} : u \in P, v \in Q \right\}.$$

Here $gr(c_1, c_2; E)$ denotes the graph of restriction of (c_1, c_2) on E.

$$\operatorname{gr}(c_1, c_2; E) \triangleq \{(t, x, c_1(t, x), c_2(t, x)) : (t, x) \in E\}.$$

Equivalent Formulation of Condition (C3)

FNE and PIM

Yurii Averboukh

Preliminaries

The mair result

Equivalent Formulations

System of HJ Equations

Equations

There exists closed set $E \subset [t_0, \vartheta_0] \times \mathbb{R}^n$, $(t_*, x_*) \in E$, such that for all $(t, x, z_1, z_2) \in \operatorname{gr}(c_1, c_2)$

$$\left[\operatorname{co} D_t(\operatorname{gr}(c_1, c_2; E))(t, x, z_1, z_2)\right] \cap \mathcal{F}^*(t, x) \neq \varnothing.$$

Here $D_t(\operatorname{gr}(c_1, c_2; E))(t, x, z_1, z_2)$ is right-side derivative of set $\operatorname{gr}(c_1, c_2; E)$ for (t, x, z_1, z_2) [Guseinov, Subbotin, Ushakov]:

$$D_{t}(\operatorname{gr}(c_{1}, c_{2}; E))(t, x, z_{1}, z_{2}) = \left\{ (g, \zeta_{1}, \zeta_{2}) : (g, \zeta_{1}, \zeta_{2}) : \lim_{\delta \downarrow 0} \frac{d((x + \delta g, z_{1} + \delta \zeta_{1}, z_{2} + \delta \zeta_{2}), \operatorname{gr}(c_{1}, c_{2}; E; t))}{\delta} = 0 \right\},$$

$$\operatorname{gr}(c_1, c_2; E; t) \triangleq \{(x, z_1, z_2) : (t, x, z_1, z_2) \in \operatorname{gr}(c_1, c_2; E)\}.$$

System of HJ Equations [Basar & Olsder]

FNE and PIM

Yurii Averboukh

Preliminaries

The mair result

Equivalent Formulations

System of HJ

Equations Example Let $\gamma_1, \gamma_2 : [t_0, \vartheta_0] \times \mathbb{R}^n \to \mathbb{R}$ satisfy the following conditions

$$\gamma_i(\vartheta_0,\cdot) = \sigma_i(\cdot), \quad i = 1, 2$$

$$\frac{\partial \gamma_i(t,x)}{\partial t} + \left\langle \frac{\partial \gamma_i(t,x)}{\partial x}, f(t,x,\hat{u}(t,x),\hat{v}(t,x)) \right\rangle = 0, \quad i = 1, 2.$$

Here

$$\left\langle \frac{\partial \gamma_1(t,x)}{\partial x}, f(t,x,\hat{u}(t,x),\hat{v}(t,x)) \right\rangle =$$

$$= \max_{u \in P} \left\langle \frac{\partial \gamma_1(t,x)}{\partial x}, f(t,x,u,\hat{v}(t,x)) \right\rangle,$$

$$\left\langle \frac{\partial \gamma_2(t,x)}{\partial x}, f(t,x,\hat{u}(t,x),\hat{v}(t,x)) \right\rangle =$$

$$= \max_{v \in P} \left\langle \frac{\partial \gamma_2(t,x)}{\partial x}, f(t,x,\hat{u}(t,x),v) \right\rangle.$$

Theorem 2

FNE and PIM

System of HJ Equations

If functions γ_i , i = 1, 2 are continuously differentiable and provide the solution of system of Hamilton-Jacobi equations then for all $(t_*, x_*) \in [t_0, \theta_0] \times \mathbb{R}^n$ the pair of functions (γ_1, γ_2) satisfies the conditions (C1)-(C3).

Example

FNE and PIM

Yurii Averboukh

Preliminarie

The mair result

Equivalent Formulations

System of H. Equations

Example

Differential game

$$t \in [0,1], \, u,v \in [-1,1]$$

$$\begin{cases} \dot{x} &= u \\ \dot{y} &= v \end{cases}$$

Functionals

$$\sigma_1(x,y) \triangleq -|x-y|, \ \sigma_2(x,y) \triangleq y.$$

The fixed point of operator A_1

FNE and PIM

Yurii Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ Equations

Equations

Denote by c_1^{\diamond} the least function satisfying the conditions $c_1(1, x, y) = \sigma_1(x_*, y_*) = -|x - y|, A_1[c_1] = c_1.$

The Programmed Iterations Methood gives that

$$c_1^{\diamond} = -|x_* - y_*|.$$

Let

$$c_1^+(t, x_*, y_*) \triangleq \\ \triangleq \max\{\sigma_1(x[1], y[1]) : (x[\cdot], y[\cdot]) \in \operatorname{Sol}(t, x_*, y_*)\} = \\ = \min\{-|x_* - y_*| + 2(1 - t), 0\}.$$

The functions

$$c_1^{\beta}(t, x_*, y_*) = -|x_* - y_*| + \beta(1 - t)$$

for $\beta \in [0, c_1^+(1, x_*, y_*) - c_1^{\diamond}(1, x_*, y_*)]$ satisfy the conditions: $c_1^{\beta}(1, x, y) = \sigma_1(x, y) = -|x - y|, A_1[c_1^{\beta}] = c_1^{\beta}.$

The fixed point of operator A_1

FNE and PIM

Yurii Averboukl

Preliminaries

The main result

Equivalent Formulations

Formulations

Example

Conditions $c_1(1, x_*, y_*) = \sigma_1(x_*, y_*)$ and $A_1[c_1] = c_1$ imply that $c_1(t, x_*, y_*) \in [c_1^{\diamond}(t, x_*, y_*), c_1^+(t, x_*, y_*)].$

Moreover

$$\begin{aligned} \{c_1^{\beta}(t,x_*,y_*): \beta \in [0,c_1^+(1,x_*,y_*)-c_1^{\diamond}(1,x_*,y_*)]\} &= \\ &= [c_1^{\diamond}(t,x,y),c_1^+(t,x,y)]. \end{aligned}$$

The fixed point of operator A_2

FNE and PIM

rurii Averboukl

Preliminarie

result

Equivalent Formulation:

System of H

Example

Only the function

$$c_2^*(t, x, y) = y_* + (1 - t)$$

satisfies the conditions (C1) and (C2): $c_2^*(1, x, y) = y$, $A_2[c_2^*] = c_2^*$.

The set of N-values

FNE and PIM

Yurn Averboukh

Preliminaries

The main result

Equivalent Formulations

System of HJ

Example

Case $x_* \leq y_*$. If pair (c_1, c_2^*) satisfies the condition (C3) at the position (t, x_*, y_*) then one can directly shows that $c_1 = -|x_* - y_*|$.

Therefore,

$$\mathcal{N}(t, x_*, y_*) = \{(-|x_* - y_*|, y_* + (1 - t))\}.$$

Case $x_* > y_*$. If $\beta \in [0, c_1^+(1, x_*, y_*) - c_1^{\diamond}(1, x_*, y_*)]$ then the pair (c_1^{β}, c_2) satisfies the condition (C3) at the position (t, x_*, y_*) . Therefore,

$$\mathcal{N}(t, x_*, y_*) =$$
= $[-|x_* - y_*|, \min\{0, -|x_* - y_*| + 2(1-t)\}] \times \{y_* + (1-t)\}.$

The System of HJ Equations Approach

FNE and PIM

Yurii Averbouk

Preliminarie

The mair result

Equivalent Formulations

System of H

Example

$$\left\{ \begin{array}{ll} \frac{\partial \gamma_1}{\partial t} + \frac{\partial \gamma_1}{\partial x} u_*(t,x,y) + \frac{\partial \gamma_1}{\partial y} v_*(t,x,y) &= 0 \\ \frac{\partial \gamma_2}{\partial t} + \frac{\partial \gamma_2}{\partial x} u_*(t,x,y) + \frac{\partial \gamma_2}{\partial y} v_*(t,x,y) &= 0. \end{array} \right.$$

Boundary conditions: $\gamma_1(1, x, y) = -|x - y|, \ \gamma_2(1, x, y) = y.$

Here $u_*(t, x, y)$ and $v_*(t, x, y)$ satisfy the conditions

$$\frac{\partial \gamma_1}{\partial x} u_*(t,x,y) = \max_{u \in P} \left[\frac{\partial \gamma_1}{\partial x} u \right], \quad \frac{\partial \gamma_1}{\partial x} v_*(t,x,y) = \max_{u \in P} \left[\frac{\partial \gamma_1}{\partial x} v \right].$$

There are no classical solution of this system.

The System of HJ Equations Approach

FNE and PIM

Averboukh

Preliminaries

The main result

Equivalent Formulations

System of H

Example

The minimax (viscosity in sense of Crandall and Lions) solution is unique. It is equal to

$$\gamma_1(t, x, y) = \begin{cases} x - y, & x \le y, \\ -x + y + 2(1 - t), & x > y, -x + y + 2(1 - t) < 0, \\ 0, & x > y, -x + y + 2(1 - t) \ge 0 \end{cases}$$

$$\gamma_2(t, x, y) = c_2^*(t, x, y) = y + (1 - t).$$

Property:

$$\gamma_1(t, x, y) = \max\{J_1 : \exists J_2(J_1, J_2) \in \mathcal{N}(t, x, y)\}.$$

Bibliography

FNE and PIM

Averboukh

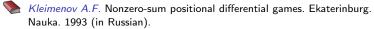
Preliminarie:

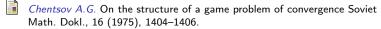
result Equivalent

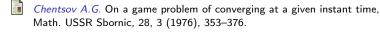
Equivalent Formulations

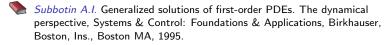
Equations

Krasovskii N.N., Subbotin A.I. Game-Theoretical Control Problems, New York: Springer, 1988.









- Guseinov H.G., Subbotin A.I., Ushakov A.I. Derivatives for multivalued mappings with applications to game-theoretical problems of control// Probl. Contr. Inform. Theory, 14:3 (1985), 155-167.
- Basar T., Olsder G.J. Dynamic Noncooperative Game Theory, Academic Press, London/New York, 1995.

FNE and PIM

Averboukl

Preliminarie

The mair result

Equivalent Formulations

Formulations

Evample

THANK YOU FOR YOUR ATTENTION