Некоторые конструкции, связанные с методом программных итераций

Ю.В.Авербух, А.Г.Ченцов

Институт Математики и Механики Уральского Отделения Российской Академии Наук ayv@imm.uran.ru, chentsov@imm.uran.ru

IX Всероссийский съезд по теоретической и прикладной механике, Нижний Новгород, 22-28 августа 2006 года

Дифференциальная игра

Рассматривается управляемая система вида

$$\dot{x} = f(t, x, u, v), \ t \in [t_0, \vartheta_0], \ x \in \mathbb{R}^n, \ u \in P, v \in Q.$$

Переменные u и v — управления первого и второго игрока соответсвенно.

Цели игроков

Первый игрок стремится привести систему на множество M, $M \subset [t_0,\vartheta_0] \times \mathbb{R}^n$ в некоторый момент времени, второй игрок стремится не допустить этой встречи.

Условия

- \bullet M замкнутое множество;
- \bullet P и Q компакты;
- f локально липшицева
- f удовлетворяет условию подлинейного роста;
- условие седловой точки в маленькой игре:

$$\min_{u \in P} \max_{v \in Q} < s, f(t,x,u,v) >= \max_{v \in Q} \min_{u \in P} < s, f(t,x,u,v) >.$$

Стратегии и движения

Используются позиционная формализация Н.Н.Красовского

Пусть $U:[t_0,\vartheta_0] imes\to\mathbb{R}^n$ – позиционная стратегия, $[t_*,\vartheta_0]$ $\Delta=t_*=\tau_0<\tau_1<\ldots<\tau_n=\vartheta_0$ разбиение отрезка. Любая функция, удовлетворяющая условиям

$$\dot{x}(t)\in\{f(t,x(t),U(\tau_i,x(\tau_i)),v):v\in Q\},t\in[\tau_i,\tau_{i+1}]$$
 $x(t_*)=x_*$ называется ломаной Эйлера.

Конструктивные движения

Пределы ломаных Эйлера называются конструктивными движениями, порожденными стратегией U, выходящими из позиции (t_*, x_*) .

Использование в качестве позиционных стратегий разрывных функций существенно (Н.Н.Суботина, А.И.Субботин)

Множество позиционного поглощения

Структура решения дифференциальной игры характеризуется теоремой об альтернативе, установленной Н.Н.Красовским и А.И.Субботиным.

Определение

Множество $W \subset [t_0, \vartheta_0] \times \mathbb{R}^n$ называется u-стабильным мостом если:

- $\mathbf{0} \ M \subset W$
- ② $\forall v_* \in Q, \forall (t_*, x_*) \in W \exists y(\cdot)$ $\dot{y}(t) \in \text{co}\{f(t, x, u, v_*) : u \in P\}, \ y(t_*) = x_*,$ $\exists \theta \in [t_*, \vartheta_0] : \ ((\theta, y(\theta) \in M) \& ((t, y(t)) \in W, \ \forall t \in [t_*, \theta]).$

Метод программных итераций

Пусть $E \subset [t_0, \vartheta_0] \times \mathbb{R}^n$.

 $A(E) \triangleq \{(t,x) \in E |$ для каждого управления v(t) существует решение дифференциального включения

$$\dot{y}(t) \in \operatorname{co}\{f(t,y(t),u,v(t))|u \in P\},\$$

y(t)=xсо свойством $(\theta,y(\theta))\in M$ для некоторого $\theta\in[t,\vartheta_0]$ и $(t,y(t))\in E\ \forall t\in[t,\theta]$ }

 $\mathbf{A}(E) \triangleq \{(t,x) \in E |$ для каждого постоянного управления v^* существует решение дифференциального включения

$$\dot{y}(t) \in \operatorname{co}\{f(t, y(t), u, v^*) | u \in P\},\$$

y(t)=x со свойством $(\theta,y(\theta))\in M$ для некоторого $\theta\in[t,\vartheta_0]$ и $(t,y(t))\in E\ \forall t\in[t,\theta]$ }

Последовательности множеств

Определение

$$W^{(0)} \triangleq [t_0, \vartheta] \times \mathbb{R}^n,$$

$$W^{(k)} = A(W^{(k-1)}), \ k > 0.$$

$$W_0 \triangleq [t_0, \vartheta] \times \mathbb{R}^n,$$

$$W_k = \mathbf{A}(W_{k-1}), \ k > 0.$$

Свойства

$$W^{(k)} \downarrow \mathfrak{W}$$
.

$$W_k \downarrow \mathfrak{W}$$
.

Ш – множество позиционного поглощения.

$$W^{(k)} \subset W_k$$
.

Результаты:

Пусть M– компакт. Тогда

- Последовательности $W^{(k)}$ и W_k сходятся к \mathfrak{W} равномерно (в метрике Хаусдорфа).
- $m{2}$ Либо $m{\mathfrak{W}}[t]=m{\varnothing}$ и существует K, что $W^{(k)}[t]=m{\varnothing}$, $W_k[t]=m{\varnothing}$ для всех k>K, либо $W^{(k)}[t]\neq m{\varnothing}$, $W_k[t]\neq m{\varnothing}$ для всех натуральных k и $m{\mathfrak{W}}[t]\neq m{\varnothing}$.
- **3** Пусть $t \in [t_0, \vartheta_0]$ такого, что сечение $\mathfrak{W}[t] \neq \varnothing$. В этом случае имеет место равномерная сходимость $W^{(k)}[t]$ и $W_k[t]$ к $\mathfrak{W}[t]$.

$$E[t] \triangleq \{x \in \mathbb{R}^n | (t, x) \in E\}.$$

Экстремальное прицеливание на нестабильное множество

$$(t_*,x_*)$$
 – позиция, $\Delta=\{ au_i\}_{i=0}^N$ – разбиение отрезка $[t_*,artheta_0].$

Формирование управления первым игроком

Пусть x_i – положение системы в момент τ_i , $y_i^{(k)}$ – ближайший к x_i элемент $W^{(k)}$. Управление $u_i^{(k)}$ определяется по правилу:

$$\max_{v \in Q} \langle y_i^{(k)} - x_i, f(\tau_i, x_i, u_i^{(k)}, v) \rangle =$$

$$= \min_{u \in P} \max_{v \in Q} \langle y_i^{(k)} - x_i, f(\tau_i, x_i, u, v) \rangle.$$

<u>Движ</u>ение

На отрезке $[\tau_i, \tau_{i+1}]$ движение определяется как решение уравнения:

$$x(t) = x_i + \int_{\tau_i}^t f(\xi, x(t), u_i^{(k)}, v[\xi]) d\xi.$$

 $v[\cdot]$ – управление второго игрока.

Экстремальное прицеливание на нестабильное множество

Теорема

Пусть $t_* \in [t_0, \vartheta_0]$ такой момент времени, что $\mathfrak{W}[\tau_*] \neq \varnothing$, и $\varepsilon > 0$. Тогда существует $\delta > 0$ такое, что для любого разбиения $\Delta = \{\tau_i\}_{i=0}^N$ отрезка $[t_*, \vartheta_0]$, удовлетворяющего условию $\max_{i=\overline{0,N-1}} (\tau_{i+1} - \tau_i) \leq \delta,$ существует J > 0 со свойством: для любого j > J и любого $x_* \in W^{(k)}[\tau_*]$ и некоторого $\theta \in [t_*, \vartheta_0]$ $d(x[\theta], M[\theta]) \leq \varepsilon,$ $x[\cdot]$ — пошаговое движение определяемое методом

d(x,A) – расстояние от точки x до множества $A \subset \mathbb{R}^n$.

экстремального сдвига в моменты τ_i .

Спасибо за внимание