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Game-theoretical control problem

Conflict-controlled system

ẋ = f(x, u, v), (1)

t ∈ [0, ϑ], x ∈ Rn, u ∈ P, v ∈ Q.
Here u ∈ P and v ∈ Q are the controls of the first player and
the second player respectively.

Target Set

M ⊂ [t0, ϑ0]× Rn.

M is closed.
F = M [ϑ] = {x : (ϑ, x) ∈M}.
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Purpose

Original Target Set

⇒

Transformed Target Set
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Conditions

P and Q are compacts in finitely dimensional spaces.
f is continuous;
f is locally lipschitzian with respect to x;
f satisfies the sublinear growth condition with respect to x.

We consider differential games in the class of counter-strategies of
the first player and feedback strategies of the second player (advan-
tage of the first player).
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Formalization introduced by N.N. Krasovskii and A.I.
Subbotin

Step-by-step motions
Let U : [0, ϑ]× Rn ×Q→ P be a counter-strategy. Let (t∗, x∗)
be a position, let ∆ = {τi}Ni=0 be a partition of [t∗, ϑ], let v[·] be
a measurable of the second player. Then step-by-step motion is
a solution of following equations:

x[t] = x[τi−1] +
∫ t

τi−1

f(x[ξ], U(τi−1, x[τi−1], v[ξ]), v[ξ])dξ,

t ∈ [τi−1, τi], x[τ0] = x∗.

The limits of step-by-step motions as fineness of partition tends
to 0 are called constructive motions in sense of N.N. Krasovskii
and A.I. Subbotin.
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Structure of solution

By Krasovskii-Subbotin alternative theorem:
The set of solvability of approach problem is u-stable
bridge;
The counter-strategy extreme to the maximal u-stable
bridge is optimal.
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Definition
A set W ⊂ [0, ϑ]× Rn is called u-stable bridge if
∀(t∗, x∗) ∈W ∀v∗ ∈ Q ∃y(·) such that

ẏ(t) ∈ co{f(y(t), u, v∗) : u ∈ P}, y(t∗) = x∗, ∃θ ∈ [t∗, ϑ] :
((θ, y(θ)) ∈M)& ((t, y(t)) ∈W ∀t ∈ [t∗, θ]).

Counter-strategy extreme to the set W
Let (t∗, x∗) be a position, v∗ ∈ Q. Let w∗ be a proximal to x∗
element of W [t∗].

U(t∗, x∗, v∗) , argmin{〈w∗ − x∗, f(x∗, u, v∗)〉 : u ∈ P}.

Here M is target set,

E[t] , {x ∈ Rn : (t, x) ∈ E}.
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Isaacs condition

For all x, s ∈ Rn

min
u∈P

max
v∈Q
〈s, f(x, u, v)〉 = max

v∈Q
min
u∈P
〈s, f(x, u, v)〉.

If Isaacs condition holds then there exists optimal feedback strat-
egy of the first player U(t, x). This strategy is extreme to the
maximal u-stable bridge.
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Original problem
Conflict controlled system

ẋ = f(x, u, v), (1)

t ∈ [0, ϑ], x ∈ Rn, u ∈ P, v ∈ Q.
Variable u is a control of the first player, variable v is a control
of the second player.

Target Set
Suppose that M is controllability set of the control system
g(x, ω), ω ∈ Ω, and the target set M∗ , {ϑ} × F :

M = {(t, x) ∈ [t0, ϑ0]× Rn : ∃x∗ ∈ F ∃ measure µ :
x = ϕg(t, ϑ, x∗, µ)}.

F = M [ϑ],
ϕg(·, ϑ, x∗, µ) is a motion of controlled system
ẋ = g(x, ω), ω ∈ Ω, generated by measure µ.
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Transformed problem

Conflict controlled system

ẋ = f∗(x, ν, u, ω, v),

x ∈ Rn, ν ∈ {0, 1}, u ∈ P, ω ∈ Ω, v ∈ Q.
Variables u, ν and ω are controls of the first player, variable v is
a control of the second player.

f∗(x, ν, u, ω, v) = ν · f(x, u, v) + (1− ν) · g(x, ω) =

=
{
f(x, u, v), ν = 1,
g(x, ω), ν = 0.

Target set

M∗ , {ϑ} × F
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Programmed iteration method (A.G. Chentsov)

Program absorption operator
A(E) is

the set of positions (t∗, x∗) ∈ E for whose under any control
of the second player there exists measure-control bringing the
system on target set M within the set E.

Sequence of sets

W0 = [0, ϑ]× Rn;

Wk = A(Wk−1), k ∈ N.

W =
⋂
k∈N

Wk.

W is the set of solvability of approach problem.
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Designation

Original system
The set of solvability of
approach problem is denoted
by W.

Operator of program
absorption is denoted by A.

Wk , Ak([t0, ϑ0]× Rn),
k ∈ N ∪ {0}.

Transformed system
The set of solvability of
approach problem is denoted
by W∗.

Operator of program
absorption is denoted by A∗.

W ∗k , (A∗)k([t0, ϑ0]× Rn),
k ∈ N ∪ {0}.
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Designation

Fτu,v is a flow for time τ generated by the constant controls
u ∈ P and v ∈ Q in the system

ẋ = f(x, u, v).

Gτω is a flow for time τ generated by the constant control ω ∈ Ω
in the system

ẋ = g(x, ω).
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Theorem

Assumption

For all u ∈ P , v ∈ Q, ω ∈ Ω и τ ′, τ ′′ ≥ 0 flows Fτ ′u,v and Gτ ′′ω
commute:

Fτ ′u,v ◦ Gτ
′′
ω = Gτ ′′ω ◦ Fτ

′
u,v.

Statements
1 Wk = W ∗k ∀k ∈ N;
2 W = W∗;
3 if original system satisfies Isaacs condition then the

transformed system inherits this property.
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Case of smoothness

Assumption
For all u, v and ω f(·, u, v) and g(·, ω) are smooth functions.

Property

Flows Fτ ′u,v and Gτ ′′ω commute iff

[f(·, u, v), g(·, ω)](x) = 0
∀x ∈ Rn ∀u ∈ P ∀v ∈ Q ∀ω ∈ Ω.

Here
[V1, V2](x) =

∂V2(x)
∂x

V1(x)− ∂V1(x)
∂x

V2(x).
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Cylindric target set

Original system

ẋ = f(x, u, v), t ∈ [0, ϑ], x ∈ Rn, u ∈ P, v ∈ Q.

M = [0, ϑ]× F , F ⊂ Rn.

g(x, ω) ≡ 0, Ω = {ω}.

[f(·, u, v), 0] ≡ 0

Transformed system

ẋ = u0f(x, u, v), t ∈ [0, ϑ], x ∈ Rn, u0 ∈ {0, 1}, u ∈ P, v ∈ Q.

M = {ϑ} × F , F ⊂ Rn.

Statement 2 of Theorem for this case is obtained in Mitchel
I.M., Bayen A.M., Tomlin C.J. // IEEE Trans.Aut. Control,
2005, 50, 7.
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Pointing at sinking island

Original system {
ẏ = z
ż = h(u, v).

y, z ∈ Rm, u ∈ P, v ∈ Q, ϑ = 1.

M = {(t, y, z) : t ∈ [0, 1], ‖y‖ ≤ 1− t, z = 0}.

Ω = {ω ∈ Rm : ‖ω‖ ≤ 1},
g(x, ω) = g(ω) = ω.

[f(y, z, u, v), g(ω)] =(
0 0
0 0

)(
z

h(u, v)

)
−
(

0 E
0 0

)(
g(ω)

0

)
= 0.
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Pointing at sinking island

Original system {
ẏ = z
ż = h(u, v).

y, z ∈ Rm, u ∈ P, v ∈ Q, ϑ = 1.

M = {(t, y, z) : t ∈ [0, 1], ‖y‖ ≤ 1− t, z = 0}.

Transformed system{
ẏ = ν · z + (1− ν) · g(ω)
ż = ν · h(u, v).

y, z ∈ Rm, ν ∈ {0, 1}, u ∈ P, ω ∈ Ω, v ∈ Q, ϑ = 1.

M∗ = {(t, y, z) : t = 1, y = z = 0}.

Ω = {ω ∈ Rm : ‖ω‖ ≤ 1}.
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Questions?
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