A Transformation of Game-Theoretical Control Problems

Yurii Averboukh

Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia ayv@imm.uran.ru

International Conference on Differential Equations and Dynamical Systems Suzdal, June 27 - July 2, 2008

Conflict-controlled system

$$\dot{x} = f(x, u, v), \tag{1}$$

$$t\in [0,\vartheta], \ x\in \mathbb{R}^n, \ u\in P, \ v\in Q.$$

Here $u \in P$ and $v \in Q$ are the controls of the first player and the second player respectively.

Target Set

$$M \subset [t_0, \vartheta_0] \times \mathbb{R}^n.$$

 $\begin{array}{l} M \text{ is closed.} \\ F = M[\vartheta] = \{x : (\vartheta, x) \in M\}. \end{array}$

Original Target Set

Transformed Target Set

Conditions

- P and Q are compacts in finitely dimensional spaces.
- f is continuous;
- f is locally lipschitzian with respect to x;
- f satisfies the sublinear growth condition with respect to x.

We consider differential games in the class of *counter-strategies of the first player* and *feedback strategies of the second player* (advantage of the first player).

Formalization introduced by N.N. Krasovskii and A.I. Subbotin

Step-by-step motions

Let $U : [0, \vartheta] \times \mathbb{R}^n \times Q \to P$ be a counter-strategy. Let (t_*, x_*) be a position, let $\Delta = \{\tau_i\}_{i=0}^N$ be a partition of $[t_*, \vartheta]$, let $v[\cdot]$ be a measurable of the second player. Then step-by-step motion is a solution of following equations:

$$x[t] = x[\tau_{i-1}] + \int_{\tau_{i-1}}^{t} f(x[\xi], U(\tau_{i-1}, x[\tau_{i-1}], v[\xi]), v[\xi]) d\xi,$$

$$t \in [\tau_{i-1}, \tau_i], \ x[\tau_0] = x_*.$$

The limits of step-by-step motions as fineness of partition tends to 0 are called constructive motions in sense of N.N. Krasovskii and A.I. Subbotin.

< 47 ▶

By Krasovskii-Subbotin alternative theorem:

- The set of solvability of approach problem is *u*-stable bridge;
- The counter-strategy extreme to the maximal *u*-stable bridge is optimal.

Definition

A set $W \subset [0, \vartheta] \times \mathbb{R}^n$ is called *u*-stable bridge if $\forall (t_*, x_*) \in W \ \forall v_* \in Q \ \exists y(\cdot)$ such that $\dot{y}(t) \in \operatorname{co}\{f(y(t), u, v_*) : u \in P\}, \ y(t_*) = x_*, \ \exists \theta \in [t_*, \vartheta] :$ $((\theta, y(\theta)) \in M)\& \ ((t, y(t)) \in W \ \forall t \in [t_*, \theta]).$

Counter-strategy extreme to the set W

Let (t_*, x_*) be a position, $v_* \in Q$. Let w_* be a proximal to x_* element of $W[t_*]$.

$$U(t_*, x_*, v_*) \triangleq \operatorname{argmin}\{\langle w_* - x_*, f(x_*, u, v_*) \rangle : u \in P\}.$$

Here M is target set,

$$E[t] \triangleq \{ x \in \mathbb{R}^n : (t, x) \in E \}.$$

For all $x, s \in \mathbb{R}^n$

$$\min_{u \in P} \max_{v \in Q} \langle s, f(x, u, v) \rangle = \max_{v \in Q} \min_{u \in P} \langle s, f(x, u, v) \rangle.$$

If Isaacs condition holds then there exists optimal feedback strategy of the first player U(t, x). This strategy is extreme to the maximal *u*-stable bridge.

Original problem

Conflict controlled system

$$\dot{x} = f(x, u, v), \tag{1}$$

$$t \in [0, \vartheta], \ x \in \mathbb{R}^n, \ u \in P, \ v \in Q.$$

Variable u is a control of the first player, variable v is a control of the second player.

Target Set

Suppose that M is controllability set of the control system $g(x,\omega), \omega \in \Omega$, and the target set $M^* \triangleq \{\vartheta\} \times F$: $M = \{(t,x) \in [t_0,\vartheta_0] \times \mathbb{R}^n : \exists x_* \in F \exists \text{ measure } \mu :$

$$x = \varphi_g(t, \vartheta, x_*, \mu) \}.$$

• $F = M[\vartheta],$

• $\varphi_g(\cdot, \vartheta, x_*, \mu)$ is a motion of controlled system $\dot{x} = g(x, \omega), \quad \omega \in \Omega$, generated by measure μ .

Conflict controlled system

 $\dot{x} = f^*(x, \nu, u, \omega, v),$ $x \in \mathbb{R}^n, \ \nu \in \{0, 1\}, \ u \in P, \ \omega \in \Omega, \ v \in Q.$

Variables u, ν and ω are controls of the first player, variable v is a control of the second player.

$$\begin{aligned} f^*(x,\nu,u,\omega,v) &= \nu \cdot f(x,u,v) + (1-\nu) \cdot g(x,\omega) = \\ &= \begin{cases} f(x,u,v), & \nu = 1, \\ g(x,\omega), & \nu = 0. \end{cases} \end{aligned}$$

Target set

$$M^* \triangleq \{\vartheta\} \times F$$

Program absorption operator

A(E) is

the set of positions $(t_*, x_*) \in E$ for whose under any control of the second player there exists measure-control bringing the system on target set M within the set E.

Sequence of sets

$$W_0 = [0, \vartheta] \times \mathbb{R}^n;$$
$$W_k = A(W_{k-1}), \ k \in \mathbb{N}.$$

$$\mathfrak{W} = \bigcap_{k \in \mathbb{N}} W_k.$$

 ${\mathfrak W}$ is the set of solvability of approach problem.

Original system

The set of solvability of approach problem is denoted by \mathfrak{W} .

Operator of program absorption is denoted by A.

$$W_k \triangleq A^k([t_0, \vartheta_0] \times \mathbb{R}^n),$$

$$k \in \mathbb{N} \cup \{0\}$$

Transformed system

The set of solvability of approach problem is denoted by \mathfrak{W}^* .

Operator of program absorption is denoted by A^* .

$$W_k^* \triangleq (A^*)^k ([t_0, \vartheta_0] \times \mathbb{R}^n),$$

$$k \in \mathbb{N} \cup \{0\}.$$

 $\mathcal{F}_{u,v}^\tau$ is a flow for time τ generated by the constant controls $u\in P$ and $v\in Q$ in the system

 $\dot{x} = f(x, u, v).$

 \mathcal{G}_ω^τ is a flow for time τ generated by the constant control $\omega\in\Omega$ in the system

$$\dot{x} = g(x, \omega).$$

Assumption

For all $u \in P$, $v \in Q$, $\omega \in \Omega$ u $\tau', \tau'' \geq 0$ flows $\mathcal{F}_{u,v}^{\tau'}$ and $\mathcal{G}_{\omega}^{\tau''}$ commute:

$$\mathcal{F}_{u,v}^{\tau'} \circ \mathcal{G}_{\omega}^{\tau''} = \mathcal{G}_{\omega}^{\tau''} \circ \mathcal{F}_{u,v}^{\tau'}.$$

Statements

- $W_k = W_k^* \ \forall k \in \mathbb{N};$
- $\mathfrak{W} = \mathfrak{W}^*;$
- if original system satisfies Isaacs condition then the transformed system inherits this property.

Assumption

For all u, v and $\omega f(\cdot, u, v)$ and $g(\cdot, \omega)$ are smooth functions.

Property

Flows $\mathcal{F}_{u,v}^{\tau'}$ and $\mathcal{G}_{\omega}^{\tau''}$ commute iff

$$[f(\cdot, u, v), g(\cdot, \omega)](x) = 0$$

$$\forall x \in \mathbb{R}^n \ \forall u \in P \ \forall v \in Q \ \forall \omega \in \Omega.$$

Here

$$[V_1, V_2](x) = \frac{\partial V_2(x)}{\partial x} V_1(x) - \frac{\partial V_1(x)}{\partial x} V_2(x).$$

э

Cylindric target set

Original system

$$\begin{split} \dot{x} &= f(x,u,v), \ t\in [0,\vartheta], \ x\in \mathbb{R}^n, \ u\in P, \ v\in Q. \\ M &= [0,\vartheta]\times F, \, F\subset \mathbb{R}^n. \end{split}$$

$$g(x,\omega) \equiv 0, \quad \Omega = \{\omega\}.$$
$$[f(\cdot, u, v), 0] \equiv 0$$

Transformed system

 $\dot{x} = u_0 f(x, u, v), \ t \in [0, \vartheta], \ x \in \mathbb{R}^n, \ u_0 \in \{0, 1\}, \ u \in P, \ v \in Q.$

 $M = \{\vartheta\} \times F, \, F \subset \mathbb{R}^n.$

Statement 2 of **Theorem** for this case is obtained in *Mitchel I.M.*, *Bayen A.M.*, *Tomlin C.J.* // IEEE Trans.Aut. Control, 2005, **50**, 7.

Pointing at sinking island

Original system

$$\left\{ \begin{array}{ll} \dot{y}=&z\\ \dot{z}=&h(u,v). \end{array} \right.$$

 $y,z\in \mathbb{R}^m,\, u\in P,\, v\in Q,\, \vartheta=1.$

 $M = \{(t,y,z) : t \in [0,1], \|y\| \le 1-t, \ z = 0\}.$

$$\Omega = \{ \omega \in \mathbb{R}^m : \|\omega\| \le 1 \},\ g(x, \omega) = g(\omega) = \omega.$$

$$\begin{bmatrix} f(y, z, u, v), g(\omega) \end{bmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} z \\ h(u, v) \end{pmatrix} - \begin{pmatrix} \mathbf{0} & E \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} g(\omega) \\ 0 \end{pmatrix} = 0.$$

표 제 표

Pointing at sinking island

Original system

$$\left\{ \begin{array}{ll} \dot{y}=&z\\ \dot{z}=&h(u,v). \end{array} \right.$$

$$\begin{split} y, z \in \mathbb{R}^m, \, u \in P, \, v \in Q, \, \vartheta &= 1. \\ M &= \{(t, y, z) : t \in [0, 1], \|y\| \leq 1 - t, \, \, z = 0\}. \end{split}$$

Transformed system

$$\left\{ \begin{array}{ll} \dot{y}=&\nu\cdot z+(1-\nu)\cdot g(\omega)\\ \dot{z}=&\nu\cdot h(u,v). \end{array} \right.$$

$$y,z\in \mathbb{R}^m,\,\nu\in\{0,1\},\,u\in P,\,\omega\in\Omega,\,v\in Q,\,\vartheta=1.$$

$$M^* = \{(t, y, z) : t = 1, \ y = z = 0\}.$$

 $\Omega = \{ \omega \in \mathbb{R}^m : \|\omega\| \leq 1 \}.$

Questions?

Yurii Averboukh Transformation of Control Problems

臣

-