Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control with Guide

Approximative Realization Approximative Realization of Nonanticipative Strategies in Nonzero-sum Differential Games

Yurii Averboukh

Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia ayv@imm.uran.ru

The International Conference on on Mathematical Control Theory and Mechanics Suzdal, Russia, July 1-5, 2011

ション ふゆ マ キャット マックシン

Outline

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization **1** Nonanticipative Strategies

- 2 Nash Value of the Game
- 3 Control with Guide
- 4 Approximation of Nonanticipative Strategies

ション ふゆ く は く は く む く む く し く

Nonzero-sum differential game

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization

$$\dot{x} = f(t, x, u, v), \quad t \in [t_0, \vartheta_0], \quad x \in \mathbb{R}^n, \quad u \in P, \quad v \in Q.$$

ション ふゆ く は く は く む く む く し く

Here u and v are controls of the player I and the player II respectively.

- The player I wants to maximize $\sigma_1(x(\vartheta_0))$.
- The player II wants to maximize $\sigma_2(x(\vartheta_0))$.

Conditions

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control with Guide

Approximative Realization

- \blacksquare The sets P and Q are compacts.
- The functions f, σ_1 and σ_2 are continuous.
- The function f is locally Lipschitz continuous with respect to the phase variable.
- The function f satisfies the sublinear growth condition with respect to x.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Isaacs condition holds.

Approaches

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control with Guide

Approximative Realization System of Hamilton-Jacobi equations;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Punishment strategies.

Measure-Valued Controls

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control with Guide

Approximative Realization Let *E* be a control space. Denote by $\mathcal{R}(\tau; E)$ the set of measure-valued controls μ on $[\tau, \vartheta_0]$ with values in rpm(*E*).

- Control of the Player I: $\mu \in \mathcal{R}(\tau; P);$
- Control of the Player II: $\nu \in \mathcal{R}(\tau; Q)$;
- Joint control of the players: $\eta \in \mathcal{R}(\tau; P \times Q)$.

Motion:

Denote by $x(\cdot, t_*, x_*, \eta)$ the solution of the problem

$$\dot{x} = \int_{P \times Q} f(t, x, u, v) \eta(t, d(u, v)), \quad x(t_*) = x_*.$$

Nonanticipative strategies

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization A map $\alpha : \mathcal{R}(t_*; Q) \to \mathcal{R}(t_*; P \times Q)$ is nonanticipative strategy of the Player I if

$$\bullet \ \alpha[\nu](t; P \times \Upsilon) = \nu(t; \Upsilon) \quad \forall \Upsilon \subset Q;$$

• $\nu_1(t,\cdot) = \nu_2(t,\cdot)$ for almost every $t \in [t_*,\theta]$ implies $\alpha[\nu_1](t,\cdot) = \alpha[\nu_2](t,\cdot)$ for almost every $t \in [t_*,\theta]$.

$$\mathcal{M}^{1}[\alpha](t_{*}, x_{*}) = \{x(\cdot, t_{*}, x_{*}, \alpha[\nu]) : \nu \in \mathcal{R}(t_{*}; Q)\}.$$

Nonanticipative strategies

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization A map $\beta : \mathcal{R}(t_*; P) \to \mathcal{R}(t_*; P \times Q)$ is nonanticipative strategy of the Player II if

$$\bullet \ \beta[\mu](t;\Upsilon\times Q) = \mu(t;\Upsilon) \ \ \forall\Upsilon\subset P;$$

• $\mu_1(t,\cdot) = \mu_2(t,\cdot)$ for almost every $t \in [t_*,\theta]$ implies $\beta[\mu_1](t,\cdot) = \beta[\mu_2](t,\cdot)$ for almost every $t \in [t_*,\theta]$.

$$\mathcal{M}^{2}[\beta](t_{*}, x_{*}) = \{x(\cdot, t_{*}, x_{*}, \beta[\mu]) : \mu \in \mathcal{R}(t_{*}; P)\}.$$

Nash equilibrium

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization A pair of nonanticipative strategies α^n , β^n and the set of motions $\mathcal{S} \subset \mathcal{M}^1[\alpha^n](t_*, x_*) \cap \mathcal{M}^2[\beta^n](t_*, x_*)$ is a **Nash equilibrium** at the position (t_*, x_*) if the following inequalities hold:

$$\sup\{\sigma_1(x(\vartheta_0)): x(\cdot) \in \mathcal{M}^2[\beta^n](t_*, x_*)\} \le \inf\{\sigma_1(z(\vartheta_0)): z(\cdot) \in \mathcal{S}\},\$$

 $\sup\{\sigma_2(x(\vartheta_0)): x(\cdot) \in \mathcal{M}^1[\alpha^n](t_*, x_*)\} \le \inf\{\sigma_2(z(\vartheta_0)): z(\cdot) \in \mathcal{S}\}.$

Auxiliary zero-sum games

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization

- Game Γ_1 : The player I wants to maximize $\sigma_1(x(\vartheta_0))$, the purpose of the player II is opposite. Denote the value of this game by $\omega_1 : [t_0, \vartheta_0] \times \mathbb{R}^n \to \mathbb{R}$.
- Game Γ_2 : The player II wants to maximize $\sigma_2(x(\vartheta_0))$, the purpose of the player I is opposite. Denote the value of this game by $\omega_2 : [t_0, \vartheta_0] \times \mathbb{R}^n \to \mathbb{R}$.

Auxiliary differential inclusion

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization

$$\dot{x} \in \mathcal{F}(t, x) \triangleq \operatorname{co}\{f(t, x, u, v) : u \in P, v \in Q\}$$

By Sol (t_*, x_*) denote the set of its solution with initial data $x(t_*) = x_*$.

$$\operatorname{Sol}(t_*, x_*) = \{ x(\cdot, t_*, x_*, \eta) : \eta \in \mathcal{R}(t_*; P \times Q) \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Structure of Nash equilibriums

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization

Theorem

If $y(\cdot) \in \mathcal{S}$ then

$$\omega_i(t, y(t)) \le \sigma_i(y(\vartheta_0)), \quad t \in [t_*, \vartheta_0], \quad i = 1, 2.$$
 (*)

うして ふゆう ふほう ふほう ふしつ

• If $y(\cdot) \in \text{Sol}(t_*, x_*)$ satisfies condition (*) then there exists the Nash equilibrium (α^n, β^n, S) such that

$$\{y(\cdot)\} = \mathcal{S} \subset \mathcal{M}^1[\alpha^n](t_*, x_*) \cap \mathcal{M}^2[\beta^n](t_*, x_*).$$

• There exists at least one Nash equilibrium.

The same structure has the set of Nash equilibriums in discontinuous feedback formalization.

Design of Nash equilibrium

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization

$$y(\cdot) = x(\cdot, t_*, x_*, \eta_*).$$

Let μ_* be a projection of η_* on P: $\mu_*(t;\Gamma) \triangleq \eta_*(t,\Gamma \times Q)$. Let ν_* be a projection of η_* on Q: $\nu_*(t;\Upsilon) \triangleq \eta_*(t,P \times \Upsilon)$.

Nonanticipative Strategy α^n : deviation from ν_* leads to punishment.

Nonanticipative Strategy β^n : deviation from μ_* leads to punishment.

うつう 山田 エル・エー・ 山田 うらう

Nash value of the game

Nonanticipat Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization

$$\mathcal{N}(t_*, x_*) = \Big\{ (\sigma_1(y(\vartheta_0)), \sigma_2(y(\vartheta_0))) :$$
$$y(\cdot) \in \mathcal{S}, (\alpha^n, \beta^n, \mathcal{S}) \text{ is a Nash equilibrium at } (t_*, x_*) \Big\}.$$

・ロト ・四ト ・ヨト ・ヨト

æ 👘

Control with Guide. Player I

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

 $\begin{array}{c} {\rm Control \ with} \\ {\rm Guide} \end{array}$

Approximative Realization \boldsymbol{x} – state of the system, \boldsymbol{w} – state of the guide.

Strategy of the Player I:

 $U_{mod} = (u(t, x, w, \varepsilon), \psi_1(t^+, t, x, w, \varepsilon), \chi_1(t, x, \varepsilon), \beta_1(\varepsilon)).$

- $u(t, x, w, \varepsilon)$ forms the control;
- ψ₁(t⁺, t, x, w, ε) is transitional function of the guide;
 χ₁(t, x, ε) initializes the guide;
- $\beta_1(\varepsilon)$ bounds the interval between corrections of control.

Control with Guide. Player I

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization Let $(t^{\natural}, x^{\natural})$ be an initial position, ε be a precision parameter, control correct at the time instants $t_0 < t_1 \leq \ldots \leq t_m$; $\Delta = \{t_j\}$; $d(\Delta) \leq \beta_1(\varepsilon)$.

Control formation.

.

at t_i the state of the system is x_i , the state of the guide is w_i , then

うして ふゆう ふほう ふほう ふしつ

on $[t_i, t_{i+1})$ the control of the Player I is $u(t_i, x_i, w_i, \varepsilon)$, at t_{i+1} the state of the guide is $\psi_1(t_{i+1}, t_i, x_i, w_i, \varepsilon)$.

Step-by-step motion: $x^1[\cdot, t^{\natural}, x^{\natural}, U_{mod}, \varepsilon, \Delta, v[\cdot]].$

Control with Guide

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control with Guide

Approximative Realization Strategy of the Player II: $V_{mod} = (v(t, x, w, \varepsilon), \psi_2(t^+, t, x, w, \varepsilon), \chi_2(t_0, x_0), \beta_2(\varepsilon)).$

Step-by-step Motion: $x^2[\cdot, t^{\natural}, x^{\natural}, V_{mod}, \varepsilon, \Xi, u[\cdot]].$

Consistent Motion. Precision parameters of the Players are equal. $x^{c}[\cdot, t^{\natural}, x^{\natural}, U_{mod}, V_{mod}, \varepsilon, \Delta, \Xi].$

Constructive Motions

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

 $\begin{array}{c} {\rm Control \ with} \\ {\rm Guide} \end{array}$

Approximative Realization

$$(t^{\natural}, x^{\natural}) \to (t_*, x_*), \varepsilon \to 0.$$

• Limit Motions of the Player I: $X^1(t_*, x_*, U_{mod})$;

• Limit Motions of the Player II: $X^2(t_*, x_*, V_{mod})$;

• Limit Consistent Motions: $X^{c}(t_{*}, x_{*}, U_{mod})$.

Nash equilibrium

Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

 $\begin{array}{c} {\rm Control \ with} \\ {\rm Guide} \end{array}$

Approximative Realization Pair of strategies $\left(U_{mod}^n,V_{mod}^n\right)$ with guide is the Hash equilibrium if

$$\max\{\sigma_1(x(\vartheta_0)) : x(\cdot) \in X^2(t_*, x_*, V_{mod}^n)\} \\\leq \min\{\sigma_1(z(\vartheta_0)) : z(\cdot) \in X^c(t_*, x_*, U_{mod}^n, V_{mod}^n)\},\$$

 $\max\{\sigma_2(x(\vartheta_0)) : x(\cdot) \in X^1(t_*, x_*, V_{mod}^n)\} \\ \leq \min\{\sigma_2(z(\vartheta_0)) : z(\cdot) \in X^c(t_*, x_*, U_{mod}^n, V_{mod}^n)\}.$

ション ふゆ アメリア ション ひゃく

Deviation

Nonanticipat Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization Let \mathcal{Y} and \mathcal{Z} be a set of continuous functions from $[t_*, \vartheta_0]$ to \mathbb{R}^n .

$$h(t_*, \mathcal{Y}, \mathcal{Z}) \triangleq \sup_{y(\cdot) \in \mathcal{Y}} \inf_{z(\cdot) \in \mathcal{Z}} \max_{t \in [t_*, \vartheta_0]} \|y(t) - z(t)\|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Approximative realization

Nonanticipati Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipative strategies

Structure

Control wit Guide

Approximative Realization

Theorem

Let (α^n, β^n, S) is a Nash equilibrium in the class of nonanticipative strategies.

There exists Nash equilibrium in the class of controls with guide (U_{mod}^n, V_{mod}^*) such that for all $t \in [t_*, \vartheta_0]$ the following equilities are fulfilled

うして ふゆう ふほう ふほう ふしつ

 $h(t_*, X^c(t_*, x_*, U_{mod}, V_{mod}), \mathcal{S}) = 0;$ $h(t_*, X^1(t_*, x_*, U_{mod}), \mathcal{M}^1[\alpha](t_*, x_*)) = 0;$ $h(t_*, X^2(t_*, x_*, V_{mod}), \mathcal{M}^2[\beta](t_*, x_*)) = 0.$ Nonanticipativ Strategies for Non-zero sum games

Yurii Averboukh

Nonanticipa tive strategies

Structure

Control with Guide

Approximative Realization

THANK YOU FOR YOUR ATTENTION

▲ロト ▲圖ト ▲画ト ▲画ト 二直 …のへで