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Differential game

Problem of Degree.

)
Y(z()) = o(z(y)) —|—/75 g(t,z,u,v)dt - min max.

u v

Problem of Guidance.

M C [to,ﬁo} x R™.

The Player U wants to bring x to M.
The Player V' prevents him.



Conditions

Game Re-
construction

Yurii
erboukh

m f, g and o are continuous;

ifferential

m f and g satisfy the sublinear growth condition with respect to
x, also they are locally Lipschitz continuous with respect to
the phase variable;

m P and () are compact sets;
m M is close.

m [saacs condition:
t,z,u,v)) +g(t,z,u,v) =
mig max(s, (£, 2, u,)) + g(t, 2,1, )

- lgleaggleln[( f(t .’E u ’U)> +g(t7xaua 'U)]



Feedback formalization [Krasovskii & Subbotin|

srential

Let U : [tg, Jo] X R™ — P be a control of the Player U,
(t«,x+) be an initial point,
A={ti =ty <t1 <...<tm =10} be a partition of [t., V],
v[-] be a measurable control of the Player V.

We do not put any condition on U!



Step-by-step motions

The solution of the problem
z = f(t,w[t],u[t],v[t]), x[t*] = T,
is called step-by-step motion if u[t] = U(t;, xz[t;]) for t € [t;, ti41]-

Denote it by 21|, t., ., U, A, v[-]].



Strategies of the Player V'

srential

The strategy of the Player V is an arbitrary function
V: [to,’l?o] x R™ — Q
We also can construct step-by-step motions x2[-,t., x.,V, A, ul-]].



Approximate Guidance

rential Denote by M, the e-neighborhood of M .

Let (t.,x.) be a position, find the strategy U* with the property:

for any € > 0 there exists § > 0 such that for any initial position
(t*,x*) d-close to (t.,x.), any partition of the segment [t*,9o] A
with fineness less then §, any control of the player V vl

(T,ZIJl[T, t*, ", U* v]]]) € M.

for some T € [t*, Jg].



Approximate Guidance

Game Re-
construction
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Approximate Guidance

Exact Guidance




Approximate Evasion

Game Re-
construction
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ifferential

e Let (t.,x.) be a position, find the strategy V* with the property:

for any € > 0 there exists § > 0 such that for any initial position
(t*,x*) d-close to (t.,x.), any partition of the segment [t*,9o] A
with fineness less then ¢, any control of the player U u]]

(Tv $2[7_7 t*’ Z‘*, U*’ UH]) ¢ M.

for any 7 € [t*, ¥).



Problem of Guidance. Alternative Theorem
|[Krasovskii & Subbotin]

srential

There exists a set W C [to, ?%9] x R™ with the property

m if (¢, 2,) € W then the Problem of Approximate Guidance is
solvable;

m if (t.,2.) ¢ W the the Problem of Approximate Evasion is
solvable.

W is maximal u-stable bridge.



u-stable bridges

The set W is called u-stable bridge if for any (t.,z.) € W, any
v € @ there exists a solution of inclusion

y € CO{f(t,y,’U,,’U) RS P}a y(t*) = Tx

and 7 € [t., ¥o] such that (7,y(7)) € M and for all £ € [t., 7]
(& y() e W.



Optimal control. Extremal shift

srential

Let (t.,z.) € W, denote by w, the nearest element of the section
of W:

minlw - o : (t.,w) € W} = [Je. — w. |-

Let u® € P satisfy the following condition:

i a. * — Wy t?va = a, * — Wy tvaea .
min max (.. — wy, f(t, 4, v)) = max(z, —w., f(t,z,u",v))

Put U® (s, xx) = u.



u-stable bridges

m Programmed Iteration Method (A.G. Chentsov);
m Numerical Methods (V.S. Patsko et al, V.N. Ushakov et al).



Problem of Degree

Game Re-
construction

Lower Value

Sl r(2,0)2 lmsup  supA(alls e, UL A o).
A(AYL0,(t &% )= (tu,a)  V[]

Val, (ts, T4) £ iII}fF*(t*, Zx, U).

Upper Value

*(te, 24, U) & lim inf inf y(2?[-, t*, 2%, V, A, ul-]]).
d(B)10,(t**) > (ta) 0[]

Val*(t., z.) = sup T* (L., 24, V).
%



Problem of Degree

srential

Alternative theorem states that there exists the value of the game

Val(t,, T4) = Val,(ts, T4) = Val* (¢, z4).



If Isaacs condition is not valid
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All statements remain valid if we substitute strategies of the player U
with counterstrategies of the player U.



Counterstrategy

The function U : [tg, ¥9] x R™ x Q — P is called counterstrategy.
It is a function of ¢, x and v.

Step-by-step motion

Let (., z.) be an initial position,

A={t, =ty <ty <...<ty, =1vo}. Step-by-step motion is a
solution of the equations

2ft] = lriy] / F(6,2[€), Ui, xlria], v[€]), €] de,

t € [ric1,7i)y x[T0] = .



Condition

Game Re-
construction

Further we consider only Problems of Degree!

For simplicity let us assume that payoff is o(z(9)).



Hamiltonian

H(t £ i .
(t,z,s) rggagggg(s,f(t,x,u,v))



[saacs-Bellman Equation

Equation:

3@((;{ %) g (t,x, 3@(15,:6)) o,

Boundary condition:



Minimax Solution

Function ¢ is a minimax solution if for all (¢,z) € (t9,J9) x R™ the
following inequalities hold:

a+ H(t,z,s) <0V(a,s) € Dyo(t,x);
a+ H(t,z,s) > 0VY(a,s) € Dip(t,z);




Dini Differentials

Dini Subdifferential

Dpp(t,z) = {(a,s) CRxR":V(r,g) e R xR"”

(t+ar,z+ ag) — p(t, ) }

a7 + (s,g) < liminf Ld
a—0 «

Dini Superdifferential

Diip(t,z) £ {(a,s) CRxR":VY(r,9) e RxR"

t — ot
at + (s,g) > limsup ot +ar,z+ ag) — ¢ ,x)}.
a—0 o



Property

If D5o(t,z) # @ and D(t,r) # @ simultaneously, then (t,z) € J
and

DBQO(t, 37) = DlJ)rsp(tﬂ 37) = {(3@(t, ;E)/at, Vgo(t, .’E))}

Here
m (Op(t,x)/0t, Vp(t,x)) is total derivative;
m J denotes the set of points x at which function ¢ is

differentiable. By the Rademacher’s theorem measure
[to,’ls‘o] x R™ \ J is 0.



Connection with Clarke Subdifferential

Clarke subdifferential
Acrp(t, z) = cof{(a, s) : Its, x: 352, C J -
a = lim Op(t;,x;)/0t, s = lim V(t;,z;)}.
71— 00 1— 00

Inclusions

DBQP(tvx) C aCl(p(tvx)7 D$@(t7$) C 6014,0(t7$)~



Inverse Problem

Let ¢ : [to, ¥9] x R™ — R be local Lipschitz continuous function
such that p(9, -) satisfies the sublinear growth condition.

Inverse
problem
Design finitely dimensional compacts P and @), dynamic function f
and payoff function o such that function o(-,-) is a value of

differential game
= f(t,z,u,v), t € [to, %], R ueP, veQ

with payoff functional o(x(dy)).



Conditions

Conditions on f

F1. f and g are continuous;

F2. f and g are locally Lipschitz continuous with respect to x;
F3. for all t € [tg, Jg]l, z e R, ue P,veQ

Inverse

1w o)l gt 2w v)] < Ap(1+ ).

Conditions on o
1. o is locally Lipschitz continuous;
2. for all x € R™
o (@) < Ao (1 + [|]]).



Properties of Hamiltionian

H1. (sublinear growth condition) for all
(t,x,s) S [to,ﬁo} x R™ x R™
[H(t, 2, 8)] < Ag[s]|(1 4 [|[]);

H2. for every bounded region A C R" there exist function w4 € Q2
Inverse and constant L 4 such that for all
proviem (', 2,8, (t", a", s") € [ty,Jo] X A x R™ the following
inequality holds:
||H(t/,x',s’) N H(t",m”,s”)” <
< wlt’ — ") + Lalla’ — 2"+
+ Ap @+ inf {2’ l2"[})[[s1 — s2ll;

H3. H is positively homogeneous with respect to the third
variable: if o > 0 then

H(t,x,as) = aH(t,z,s).



Algorithm

Game Re-
construction

Design a set E C [tg, o] x R™ x R™ and function 2 : E — R in
accordance with the function .

If the set E and functions h and ¢ satisfy some conditions,
function ¢ is a value of some differential game.
Extend h to the whole space [tg, 9] x R™ x R™.

Design control spaces P, @ and a dynamical function f in
accordance with the extension of h.

Inverse
problem

Steps 8 and 4 can be realize in general way or with the help of
some heuristics.



The set E

Inverse E=E; UE;
problem ]El _ {(t,l’,s) : (t,x) c [thrHO] X Rn7 s e E,L(t’l‘)} = 1,2
Set-valued maps E;(t,x) and Es(t,x) are defined below.



Points of Differentiability

Let (t,x) € J. Put
s Ea(t,2) 2 {Ve(t, 7)};

itz Vilt.a) & - L),




Condition (E1)

For any position (t.,z.) ¢ J and
any sequences {(t;, z;)}32,, {(t/,z!)}32, C J such that
R (th,xl) = (ts, x4), @ = 00, (8, 2})) = (ts,zx), 1 = 00, the following

bl imp]ication holds:
(Jim Ve(t;, ;) = lim Ve(t],2])) =
(Jim At al, Vit a0)) = lim (e, Vilt! ).



Limit Directions

Game Re-

el Let (4,2) ¢ J. Put
El(t, .’ﬂ) e {S eR": 3{(%,1’»} cJ:
lim (¢, 2;) = (t,2) & lm V(t;, x;) = s}.
1—> 00 11— 00

E(t,z) is nonempty and bounded.

Inverse
problem

Hamiltonian in limit directions
h(t,z,s) = lim h(t;,z;, Vo(t;, x;))
11— 00
V{(t;,z;)} C J: lim (t;,2;) = (t,2) & s = lim Vp(t;,2;).
i—00 1—00

Property
darp(t, x) = co{(—h(t,z,s),s) : s € E1(t,x)}.




Designation

I £ {(t,2) € (t0,9) x B\ J : Dy ol(1,2)) # 2
CJt &2 {(t,x) € ( ,90) x R™\ J : Dfp((t, x)) # @}.
Property: CJ-NCJT =

mlIf(t,z) e CJ,

Ey(t,z) £ {s € R" : Ja € R: (a,s) € Dyp((t,x))}\ E1(t, x);
w if (t,2) € CJT,

Es(t,z) £ {s€R":3a € R: (a,s) € Dfp((t,z))} \ B1(t, v);
m if (¢t,7) € ([tg, V0] x R?) \ (CJ-UCJTT)

Ey(t,x) £ @.



Designation

Multivalued Maps
E(t,z) £ Ey(t,z) U Eq(t, z).

EA(t, @) & {|lsll7's - s € E(t,2) \ {0}}.

Inverse
problem

Subsets of [ty, Jo] x R™ x R™
Ei £ {(t,2,5) : (t,2) € [to,P0] x R", s € Ey(t,z)},
Eq 2 {(t,x,5) : (t,2) € [to, %] X R", s € Ea(t, )},
E2E,UEy = {(t,x,s): (t,x) € [to, V0] x R, s € E(t,z)}.
Ef £ {(t,x,5) : (t,x) € [to, 0] x R", s € Ef(t,z)}.



Main Result

Let ¢ : [to, ¥0] X R™ — R be local lipschitzian function such that
verse (9, -) satisfies sublinear growth condition.

el Function ¢ is a value of some differential game with terminal
payoff if and only if the function h defined on E, is extendable on
the set Eo such that conditions (E1)—(E4) hold. (Conditions
(E2)—(E4) are defined below.)



Condition (E2)

Game Re-
construction

m If (¢t,2) € CJ~ then for any s1,...8n42 € F1(t, )
ALy« vy Ant2 € [0,1] such that
S xe =1, (=X Meh(t,z,81), > Aesk) € D™ o(t, x)
the following inequality holds:

n+2 n+2
Ll;gzxiiel]] h t, Z, E )\kSk S E Akh(t7 z, Sk‘);
k=1 k=1

m If (t,z) € CJT then for any s1,...s,42 € E1(t,5)
Aly ey Anaa € [0, 1] such that

E e =1, (— E Aeh(t, x, sk), Z AkSk) € D+<p(t, x)
the following inequality holds:

n—+2 n+2
h (t,x7z)\k5k> Z Z/\kh(t,l',sk);
k=1 k=1



Condition (E3)

Game Re-
construction

m if 0 € E(¢,x), then h(t,z,0) = 0;
m if 1 € E(t,z) and sy € E(t,z) are codirectional (i.e.
(s1,82) = [|s1] - [|s2[]), then

Inverse

proplem [salla(t, x,51) = [[s1]|Alt, z, 52).

Function h? : Ef — R
V(t,x) € [to, %] x R™ Vs € E(t,x) \ {0}
hi(t, a, |s]| 7 s) £ [|s]| 7 At @, s).



Condition (E4)

Sublinear growth condition: there exists I' > 0 such that for any
(t,x,s) € Ef the following inequality is fulfilled

hi(t z,s) <T(1+ ||z|)).

Inverse

preiion Difference estimate:
For every bounded region A C R"™ there exist L4 > 0 and
modulus of continuity w4 such that for any
(t',x',s"), (t", 2", s") € BF N [tg, 9] x A x R™ the following
inequality is fulfilled
|hh(tl,l‘/, S/) _ h%t”,l‘”, S//)l < wA(t' _ t”)—i—
+ Lalla’ = 2" + T(1 + inf{[|2"], [|" | })]|s" — s”.



Inverse
problem

A method of extension

Suppose that h as function defined on E; satisfies condition (E1).
Suppose also that the extension of h on Es given by the following
rule is well defined: for all (¢t,2) € CJ~ UCJ™T, s € Es(t,x),
S1y.-+y8nt2 € B1(t,x), A1,..., Ant2 € [0,1] such that > A, =1
Z /\iSi =S

n+2
h(t,z,s) Z)\htxs

If function h : E — R satisfies condltlons (E3) and (E4), then ¢ is
a value of some differential game with terminal payoff functional.




Scheme of Proof

Game Re-
construction

Step 0
Define payoff functional by formula o(-)

Step 1

Inverse

Droblom = Extend function ! defined on Ef to the set
[to, Vo] x R™ x S~V (S(*) is k-dimensional sphere). Denote
this extension by h*.

m Design the positively homogeneous function
H : [tg, %] x R™ x R™ — R which is an extension of h*.

Step 2

Design finitely dimensional compacts P, @ and function f in
accordance with H.



Positive Example

Letn:2,t0:07 190:1
p1(t,z1,22) =t + |21] — [22].

Function h
For x1,x9 # 0 h(t,r1,z2;sgnx1, sgnas) = —1.
Examples For x1 =0, 20 #0  h(t,0,29; £1,8gnzs) = —1.
For 1 #0, 2 =0 h(t,x1,0;sgnxy, £1) = —1.
Forz; =29 =0 h(t,0,0;£1,£1) = —1.

Sets

{( T1,T2) 1 1172 # 0}
={(t,0,22) : x2 # 0},
CJJr = {(t Iy, ) I 7é O}



Game Re-
construction

Examples

Specific Method of Reconstruction

52
1
(s1,82)
-1 .
S1
-1

H on square

For (s1,s2) such that
max{|s1],[s2} = —1
H(sy,82) 2 —1.

j:l = UoU1,
9'62 = (1 — UO)’LLQ.

Ug € {0, 1}, U, U € [—1, 1]



Negative Example

Let n =2, to =0, Jy = 1.
P2 (t, 1, x2) = t(|21] — |22]).
Analysis

J={(t,x1,22) : t € (0,1),x129 # 0}.

For (t,z) € J E(t,xz) = {(t-sgnry,t-sgnra)}.
h(t, 21, w02 - sgnes, 1 sgnas) = || — o).
Eo £ {(t, 21, xo; tsgnary, tsgnas) : (t,x1,22) € J}.

ES 2 {(t, 21, z0; 58071 /V/2, sgnm2/V?2) : (£, 31, 35) € J}.

If (t,x1,20) € J

hh(t,xl,xg;sgnxl/\/i, tsgnxg/\/i) = M

V2t
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