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Differential game

ẋ = f(t, x, u, v), t ∈ [t0, ϑ0], x ∈ Rn, u ∈ P, v ∈ Q.

Problem of Degree.

γ(x(·)) = σ(x(ϑ0)) +

∫ ϑ0

t

g(t, x, u, v)dt→ min
u

max
v

.

Problem of Guidance.
M ⊂ [t0, ϑ0]× Rn.
The Player U wants to bring x to M .
The Player V prevents him.
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Conditions

f , g and σ are continuous;
f and g satisfy the sublinear growth condition with respect to
x, also they are locally Lipschitz continuous with respect to
the phase variable;
P and Q are compact sets;
M is close.
Isaacs condition:

min
u∈P

max
v∈Q

[〈s, f(t, x, u, v)〉+ g(t, x, u, v)] =

= max
v∈Q

min
u∈P

[〈s, f(t, x, u, v)〉+ g(t, x, u, v)].
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Feedback formalization [Krasovskii & Subbotin]

Let U : [t0, ϑ0]× Rn → P be a control of the Player U ,
(t∗, x∗) be an initial point,
∆ = {t∗ = t0 < t1 < . . . < tm = ϑ0} be a partition of [t∗, ϑ0],
v[·] be a measurable control of the Player V .

We do not put any condition on U !
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Step-by-step motions

The solution of the problem

ẋ = f(t, x[t], u[t], v[t]), x[t∗] = x∗,

is called step-by-step motion if u[t] = U(ti, x[ti]) for t ∈ [ti, ti+1].

Denote it by x1[·, t∗, x∗, U,∆, v[·]].
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Strategies of the Player V

The strategy of the Player V is an arbitrary function
V : [t0, ϑ0]× Rn → Q.
We also can construct step-by-step motions x2[·, t∗, x∗, V,∆, u[·]].
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Approximate Guidance

Denote by Mε the ε-neighborhood of M .

Let (t∗, x∗) be a position, find the strategy U∗ with the property:

for any ε > 0 there exists δ > 0 such that for any initial position
(t∗, x∗) δ-close to (t∗, x∗), any partition of the segment [t∗, ϑ0] ∆
with fineness less then δ, any control of the player V v[·]

(τ, x1[τ, t∗, x∗, U∗, v[·]]) ∈Mε

for some τ ∈ [t∗, ϑ0].
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Approximate Guidance
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Approximate Evasion

Let (t∗, x∗) be a position, find the strategy V ∗ with the property:

for any ε > 0 there exists δ > 0 such that for any initial position
(t∗, x∗) δ-close to (t∗, x∗), any partition of the segment [t∗, ϑ0] ∆
with fineness less then δ, any control of the player U u[·]

(τ, x2[τ, t∗, x∗, U∗, v[·]]) /∈Mε

for any τ ∈ [t∗, ϑ0].
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Problem of Guidance. Alternative Theorem
[Krasovskii & Subbotin]

There exists a set W ⊂ [t0, ϑ0]× Rn with the property
if (t∗, x∗) ∈W then the Problem of Approximate Guidance is
solvable;
if (t∗, x∗) /∈W the the Problem of Approximate Evasion is
solvable.

W is maximal u-stable bridge.
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u-stable bridges

The set W is called u-stable bridge if for any (t∗, x∗) ∈W , any
v ∈ Q there exists a solution of inclusion

ẏ ∈ co{f(t, y, u, v) : u ∈ P}, y(t∗) = x∗

and τ ∈ [t∗, ϑ0] such that (τ, y(τ)) ∈M and for all ξ ∈ [t∗, τ ]
(ξ, y(ξ)) ∈W .
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Optimal control. Extremal shift

Let (t∗, x∗) ∈W , denote by w∗ the nearest element of the section
of W :

min{‖w − x∗‖ : (t∗, w) ∈W} = ‖x∗ − w∗‖.

Let ue ∈ P satisfy the following condition:

min
u∈P

max
v∈Q
〈x∗ − w∗, f(t, x, u, v)〉 = max

v∈Q
〈x∗ − w∗, f(t, x, ue, v)〉.

Put Ue(t∗, x∗) = ue.
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u-stable bridges

Programmed Iteration Method (A.G. Chentsov);
Numerical Methods (V.S. Patsko et al, V.N. Ushakov et al).
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Problem of Degree

Lower Value

Γ∗(t∗, x∗, U) , lim sup
d(∆)↓0,(t∗,x∗)→(t∗,x∗)

sup
v[·]

γ(x1[·, t∗, x∗, U,∆, v[·]]).

Val∗(t∗, x∗) , inf
U

Γ∗(t∗, x∗, U).

Upper Value

Γ∗(t∗, x∗, U) , lim inf
d(∆)↓0,(t∗,x∗)→(t∗,x∗)

inf
v[·]

γ(x2[·, t∗, x∗, V,∆, u[·]]).

Val∗(t∗, x∗) , sup
V

Γ∗(t∗, x∗, V ).
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Problem of Degree

Alternative theorem states that there exists the value of the game

Val(t∗, x∗) = Val∗(t∗, x∗) = Val∗(t∗, x∗).
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If Isaacs condition is not valid

All statements remain valid if we substitute strategies of the player U
with counterstrategies of the player U .
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Counterstrategy

The function U : [t0, ϑ0]× Rn ×Q→ P is called counterstrategy.
It is a function of t, x and v.

Step-by-step motion
Let (t∗, x∗) be an initial position,
∆ = {t∗ = t0 < t1 ≤ . . . ≤ tm = ϑ0}. Step-by-step motion is a
solution of the equations

x[t] = x[τi−1] +

∫ t

τi−1

f(ξ, x[ξ], U(τi−1, x[τi−1], v[ξ]), v[ξ])dξ,

t ∈ [τi−1, τi], x[τ0] = x∗.
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Condition

Further we consider only Problems of Degree!

For simplicity let us assume that payoff is σ(x(ϑ0)).
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Hamiltonian

H(t, x, s) , max
v∈Q

min
u∈P
〈s, f(t, x, u, v)〉.
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Isaacs-Bellman Equation

Equation:
∂ϕ(t, x)

∂t
+H

(
t, x,

∂ϕ(t, x)

∂x

)
= 0;

Boundary condition:
ϕ(ϑ0, x) = σ(x).
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Minimax Solution

Function ϕ is a minimax solution if for all (t, x) ∈ (t0, ϑ0)× Rn the
following inequalities hold:

a+H(t, x, s) ≤ 0 ∀(a, s) ∈ D−Dϕ(t, x);

a+H(t, x, s) ≥ 0 ∀(a, s) ∈ D+
Dϕ(t, x);
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Dini Differentials

Dini Subdifferential

D−Dϕ(t, x) ,
{

(a, s) ⊂ R× Rn : ∀(τ, g) ∈ R× Rn

aτ + 〈s, g〉 ≤ lim inf
α→0

ϕ(t+ ατ, x+ αg)− ϕ(t, x)

α

}
.

Dini Superdifferential

D+
Dϕ(t, x) ,

{
(a, s) ⊂ R× Rn : ∀(τ, g) ∈ R× Rn

aτ + 〈s, g〉 ≥ lim sup
α→0

ϕ(t+ ατ, x+ αg)− ϕ(t, x)

α

}
.
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Property

If D−Dϕ(t, x) 6= ∅ and D+
Dϕ(t, x) 6= ∅ simultaneously, then (t, x) ∈ J

and

D−Dϕ(t, x) = D+
Dϕ(t, x) = {(∂ϕ(t, x)/∂t,∇ϕ(t, x))}.

Here
(∂ϕ(t, x)/∂t,∇ϕ(t, x)) is total derivative;
J denotes the set of points x at which function ϕ is
differentiable. By the Rademacher’s theorem measure
[t0, ϑ0]× Rn \ J is 0.
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Connection with Clarke Subdifferential

Clarke subdifferential
∂Clϕ(t, x) = co{(a, s) : ∃{ti, xi}∞i=1 ⊂ J :

a = lim
i→∞

∂ϕ(ti, xi)/∂t, s = lim
i→∞

∇ϕ(ti, xi)}.

Inclusions

D−Dϕ(t, x) ⊂ ∂Clϕ(t, x), D+
Dϕ(t, x) ⊂ ∂Clϕ(t, x).
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Inverse Problem

Let ϕ : [t0, ϑ0]× Rn → R be local Lipschitz continuous function
such that ϕ(ϑ0, ·) satisfies the sublinear growth condition.

Design finitely dimensional compacts P and Q, dynamic function f
and payoff function σ such that function ϕ(·, ·) is a value of
differential game

ẋ = f(t, x, u, v), t ∈ [t0, ϑ0], x ∈ R, u ∈ P, v ∈ Q

with payoff functional σ(x(ϑ0)).
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Conditions

Conditions on f
F1. f and g are continuous;
F2. f and g are locally Lipschitz continuous with respect to x;
F3. for all t ∈ [t0, ϑ0], x ∈ Rn, u ∈ P , v ∈ Q

‖f(t, x, u, v)‖, |g(t, x, u, v)| ≤ Λf (1 + ‖x‖).

Conditions on σ
Σ1. σ is locally Lipschitz continuous;
Σ2. for all x ∈ Rn

|σ(x)| ≤ Λσ(1 + ‖x‖).
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Properties of Hamiltionian

H1. (sublinear growth condition) for all
(t, x, s) ∈ [t0, ϑ0]× Rn × Rn

|H(t, x, s)| ≤ Λf‖s‖(1 + ‖x‖);

H2. for every bounded region A ⊂ Rn there exist function ωA ∈ Ω
and constant LA such that for all
(t′, x′, s′), (t′′, x′′, s′′) ∈ [t0, ϑ0]×A× Rn the following
inequality holds:
‖H(t′, x′, s′)−H(t′′, x′′, s′′)‖ ≤

≤ ω(t′ − t′′) + LA‖x′ − x′′‖+
+ Λf (1 + inf{‖x′‖, ‖x′′‖})‖s1 − s2‖;

H3. H is positively homogeneous with respect to the third
variable: if α ≥ 0 then

H(t, x, αs) = αH(t, x, s).
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Algorithm

1 Design a set E ⊂ [t0, ϑ0]×Rn ×Rn and function h : E→ R in
accordance with the function ϕ.

2 If the set E and functions h and ϕ satisfy some conditions,
function ϕ is a value of some differential game.

3 Extend h to the whole space [t0, ϑ0]× Rn × Rn.
4 Design control spaces P , Q and a dynamical function f in

accordance with the extension of h.

Steps 3 and 4 can be realize in general way or with the help of
some heuristics.
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The set E

E = E1 ∪ E2;
Ei = {(t, x, s) : (t, x) ∈ [t0, ϑ0]× Rn, s ∈ Ei(t, x)} i = 1, 2.
Set-valued maps E1(t, x) and E2(t, x) are defined below.
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Points of Differentiability

Let (t, x) ∈ J . Put
E1(t, x) , {∇ϕ(t, x)};

h(t, x,∇ϕ(t, x)) , −∂ϕ(t, x)

∂t
.
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Condition (E1)

For any position (t∗, x∗) /∈ J and
any sequences {(t′i, x′i)}∞i=1, {(t′′i , x′′i )}∞i=1 ⊂ J such that
(t′i, x

′
i)→ (t∗, x∗), i→∞, (t′′i , x

′′
i )→ (t∗, x∗), i→∞, the following

implication holds:

( lim
i→∞

∇ϕ(t′i, x
′
i) = lim

i→∞
∇ϕ(t′′i , x

′′
i ))⇒

( lim
i→∞

h(t′i, x
′
i,∇ϕ(t′i, x

′
i)) = lim

i→∞
h(t′′i , x

′′
i ,∇ϕ(t′′i , x

′′
i ))).
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Limit Directions

Let (t, x) /∈ J . Put

E1(t, x) , {s ∈ Rn : ∃{(ti, xi)} ⊂ J :

lim
i→∞

(ti, xi) = (t, x) & lim
i→∞

∇ϕ(ti, xi) = s}.

E1(t, x) is nonempty and bounded.

Hamiltonian in limit directions

h(t, x, s) , lim
i→∞

h(ti, xi,∇ϕ(ti, xi))

∀{(ti, xi)} ⊂ J : lim
i→∞

(ti, xi) = (t, x) & s = lim
i→∞

∇ϕ(ti, xi).

Property

∂Clϕ(t, x) = co{(−h(t, x, s), s) : s ∈ E1(t, x)}.
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Designation

CJ− , {(t, x) ∈ (t0, ϑ0)× Rn \ J : D−Dϕ((t, x)) 6= ∅};

CJ+ , {(t, x) ∈ (t0, ϑ0)× Rn \ J : D+
Dϕ((t, x)) 6= ∅}.

Property: CJ− ∩ CJ+ = ∅.

If (t, x) ∈ CJ−,
E2(t, x) , {s ∈ Rn : ∃a ∈ R : (a, s) ∈ D−Dϕ((t, x))} \ E1(t, x);

if (t, x) ∈ CJ+,

E2(t, x) , {s ∈ Rn : ∃a ∈ R : (a, s) ∈ D+
Dϕ((t, x))} \ E1(t, x);

if (t, x) ∈ ([t0, ϑ0]× Rn) \ (CJ− ∪ CJ+)

E2(t, x) , ∅.
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Designation

Multivalued Maps
E(t, x) , E1(t, x) ∪ E2(t, x).

E\(t, x) , {‖s‖−1s : s ∈ E(t, x) \ {0}}.

Subsets of [t0, ϑ0]× Rn × Rn

E1 , {(t, x, s) : (t, x) ∈ [t0, ϑ0]× Rn, s ∈ E1(t, x)},

E2 , {(t, x, s) : (t, x) ∈ [t0, ϑ0]× Rn, s ∈ E2(t, x)},

E , E1 ∪ E2 = {(t, x, s) : (t, x) ∈ [t0, ϑ0]× Rn, s ∈ E(t, x)}.

E\ , {(t, x, s) : (t, x) ∈ [t0, ϑ0]× Rn, s ∈ E\(t, x)}.
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Main Result

Let ϕ : [t0, ϑ0]× Rn → R be local lipschitzian function such that
ϕ(ϑ0, ·) satisfies sublinear growth condition.
Function ϕ is a value of some differential game with terminal
payoff if and only if the function h defined on E1 is extendable on
the set E2 such that conditions (E1)–(E4) hold. (Conditions
(E2)–(E4) are defined below.)
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Condition (E2)

If (t, x) ∈ CJ− then for any s1, . . . sn+2 ∈ E1(t, s)
λ1, . . . , λn+2 ∈ [0, 1] such that∑

λk = 1, (−
∑
λkh(t, x, sk),

∑
λksk) ∈ D−ϕ(t, x)

the following inequality holds:

h

(
t, x,

n+2∑
k=1

λksk

)
≤
n+2∑
k=1

λkh(t, x, sk);

If (t, x) ∈ CJ+ then for any s1, . . . sn+2 ∈ E1(t, s)
λ1, . . . , λn+2 ∈ [0, 1] such that∑

λk = 1, (−
∑
λkh(t, x, sk),

∑
λksk) ∈ D+ϕ(t, x)

the following inequality holds:

h

(
t, x,

n+2∑
k=1

λksk

)
≥
n+2∑
k=1

λkh(t, x, sk);
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Condition (E3)

if 0 ∈ E(t, x), then h(t, x, 0) = 0;
if s1 ∈ E(t, x) and s2 ∈ E(t, x) are codirectional (i.e.
〈s1, s2〉 = ‖s1‖ · ‖s2‖), then

‖s2‖h(t, x, s1) = ‖s1‖h(t, x, s2).

Function h\ : E\ → R

∀(t, x) ∈ [t0, ϑ0]× Rn ∀s ∈ E(t, x) \ {0}
h\(t, x, ‖s‖−1s) , ‖s‖−1h(t, x, s).
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Condition (E4)

Sublinear growth condition: there exists Γ > 0 such that for any
(t, x, s) ∈ E\ the following inequality is fulfilled

h\(t, x, s) ≤ Γ(1 + ‖x‖).

Difference estimate:
For every bounded region A ⊂ Rn there exist LA > 0 and
modulus of continuity ωA such that for any
(t′, x′, s′), (t′′, x′′, s′′) ∈ E\ ∩ [t0, ϑ0]×A× Rn the following
inequality is fulfilled

|h\(t′, x′, s′)− h\(t′′, x′′, s′′)| ≤ ωA(t′ − t′′)+
+ LA‖x′ − x′′‖+ Γ(1 + inf{‖x′‖, ‖x′′‖})‖s′ − s′′‖.
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A method of extension

Suppose that h as function defined on E1 satisfies condition (E1).
Suppose also that the extension of h on E2 given by the following
rule is well defined: for all (t, x) ∈ CJ− ∪ CJ+, s ∈ E2(t, x),
s1, . . . , sn+2 ∈ E1(t, x), λ1, . . . , λn+2 ∈ [0, 1] such that

∑
λi = 1∑

λisi = s

h(t, x, s) ,
n+2∑
i=1

λih(t, x, si).

If function h : E→ R satisfies conditions (E3) and (E4), then ϕ is
a value of some differential game with terminal payoff functional.
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Scheme of Proof

Step 0

Define payoff functional by formula σ(·) , ϕ(ϑ0, ·)

Step 1

Extend function h\ defined on E\ to the set
[t0, ϑ0]× Rn × S(n−1). (S(k) is k-dimensional sphere). Denote
this extension by h∗.
Design the positively homogeneous function
H : [t0, ϑ0]× Rn × Rn → R which is an extension of h∗.

Step 2

Design finitely dimensional compacts P , Q and function f in
accordance with H.
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Positive Example

Let n = 2, t0 = 0, ϑ0 = 1.

ϕ1(t, x1, x2) = t+ |x1| − |x2|.

Function h

For x1, x2 6= 0 h(t, x1, x2; sgnx1, sgnx2) = −1.
For x1 = 0, x2 6= 0 h(t, 0, x2;±1, sgnx2) = −1.
For x1 6= 0, x2 = 0 h(t, x1, 0; sgnx1,±1) = −1.
For x1 = x2 = 0 h(t, 0, 0;±1,±1) = −1.

Sets
J = {(t, x1, x2) : x1x2 6= 0}.
CJ− = {(t, 0, x2) : x2 6= 0},
CJ+ = {(t, x1, 0) : x1 6= 0}.
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Specific Method of Reconstruction

6

-1-1

1

-1

s1

s2

�
�
�
�
�
�
�
�q

(s1, s2)

H on square

For (s1, s2) such that
max{|s1|, |s2|} = −1
H(s1, s2) , −1.

H(s1, s2) =

= min{−|s1|,−|s2|}.

Control system{
ẋ1 = u0u1,
ẋ2 = (1− u0)u2.

u0 ∈ {0, 1}, u1, u2 ∈ [−1, 1].
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Negative Example

Let n = 2, t0 = 0, ϑ0 = 1.
ϕ2(t, x1, x2) = t(|x1| − |x2|).

Analysis
J = {(t, x1, x2) : t ∈ (0, 1), x1x2 6= 0}.

For (t, x) ∈ J E(t, x) = {(t · sgnx1, t · sgnx2)}.
h(t, x1, x2; t · sgnx1, t · sgnx2) = |x1| − |x2|.

E0 , {(t, x1, x2; tsgnx1, tsgnx2) : (t, x1, x2) ∈ J}.
E\0 , {(t, x1, x2; sgnx1/

√
2, sgnx2/

√
2) : (t, x1, x2) ∈ J}.

If (t, x1, x2) ∈ J
h\(t, x1, x2; sgnx1/

√
2, tsgnx2/

√
2) =

|x1| − |x2|√
2t

.
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