Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

On a Strucure of the Set of Differential Games Values

Yurii Averboukh

Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia ayv@imm.uran.ru

Technion, September 6, 2010

ション ふゆ マ キャット マックシン

Outline

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

- Differential games
- 2 Viscosity solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

- 3 Inverse problem
- 4 Examples

Differential game

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

$$\dot{x} = f(t, x, u, v), \quad t \in [t_0, \vartheta_0], \quad x \in \mathbb{R}^n, \quad u \in P, \quad v \in Q.$$

Problem of Degree.

$$\gamma(x(\cdot)) = \sigma(x(\vartheta_0)) + \int_t^{\vartheta_0} g(t, x, u, v) dt \to \min_u \max_v.$$

ション ふゆ く は く は く む く む く し く

Problem of Guidance.

$$\begin{split} M &\subset [t_0,\vartheta_0] \times \mathbb{R}^n.\\ \text{The Player } U \text{ wants to bring } x \text{ to } M.\\ \text{The Player } V \text{ prevents him.} \end{split}$$

Conditions

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

- f, g and σ are continuous;
- f and g satisfy the sublinear growth condition with respect to x, also they are locally Lipschitz continuous with respect to the phase variable;
- \blacksquare P and Q are compact sets;
- \blacksquare *M* is close.
- Isaacs condition:

$$\begin{split} \min_{u \in P} \max_{v \in Q} [\langle s, f(t, x, u, v) \rangle + g(t, x, u, v)] = \\ &= \max_{v \in Q} \min_{u \in P} [\langle s, f(t, x, u, v) \rangle + g(t, x, u, v)]. \end{split}$$

ション ふゆ マ キャット マックシン

Feedback formalization [Krasovskii & Subbotin]

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let $U : [t_0, \vartheta_0] \times \mathbb{R}^n \to P$ be a control of the Player U, (t_*, x_*) be an initial point, $\Delta = \{t_* = t_0 < t_1 < \ldots < t_m = \vartheta_0\}$ be a partition of $[t_*, \vartheta_0]$, $v[\cdot]$ be a measurable control of the Player V.

うして ふゆう ふほう ふほう ふしつ

We do not put any condition on U!

Step-by-step motions

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

The solution of the problem

$$\dot{x} = f(t, x[t], u[t], v[t]), \ x[t_*] = x_*,$$

ション ふゆ く は く は く む く む く し く

is called *step-by-step motion* if $u[t] = U(t_i, x[t_i])$ for $t \in [t_i, t_{i+1}]$. Denote it by $x^1[\cdot, t_*, x_*, U, \Delta, v[\cdot]]$.

Strategies of the Player V

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

The strategy of the Player V is an arbitrary function $V : [t_0, \vartheta_0] \times \mathbb{R}^n \to Q.$ We also can construct *step-by-step motions* $x^2[\cdot, t_*, x_*, V, \Delta, u[\cdot]].$

ション ふゆ く は く は く む く む く し く

Approximate Guidance

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Denote by M_{ε} the ε -neighborhood of M.

Let (t_*, x_*) be a position, find the strategy U^* with the property:

for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any initial position (t^*, x^*) δ -close to (t_*, x_*) , any partition of the segment $[t^*, \vartheta_0] \Delta$ with fineness less then δ , any control of the player $V v[\cdot]$

 $(\tau, x^1[\tau, t^*, x^*, U^*, v[\cdot]]) \in M_{\varepsilon}$

うして ふぼう ふほう ふほう ふしつ

for some $\tau \in [t^*, \vartheta_0]$.

Approximate Guidance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Approximate Evasion

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let (t_*, x_*) be a position, find the strategy V^* with the property:

for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any initial position $(t^*, x^*) \delta$ -close to (t_*, x_*) , any partition of the segment $[t^*, \vartheta_0] \Delta$ with fineness less then δ , any control of the player $U u[\cdot]$

$$(\tau, x^2[\tau, t^*, x^*, U^*, v[\cdot]]) \notin M_{\varepsilon}$$

うして ふゆう ふほう ふほう ふしつ

for any $\tau \in [t^*, \vartheta_0]$.

Problem of Guidance. Alternative Theorem [Krasovskii & Subbotin]

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

There exists a set $W \subset [t_0, \vartheta_0] \times \mathbb{R}^n$ with the property

• if $(t_*, x_*) \in W$ then the Problem of Approximate Guidance is solvable;

うして ふゆう ふほう ふほう ふしつ

• if $(t_*, x_*) \notin W$ the the Problem of Approximate Evasion is solvable.

W is maximal u-stable bridge.

u-stable bridges

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

The set W is called u-stable bridge if for any $(t_*, x_*) \in W$, any $v \in Q$ there exists a solution of inclusion

$$\dot{y} \in co\{f(t, y, u, v) : u \in P\}, y(t_*) = x_*$$

ション ふゆ アメリア ション ひゃく

and $\tau \in [t_*, \vartheta_0]$ such that $(\tau, y(\tau)) \in M$ and for all $\xi \in [t_*, \tau]$ $(\xi, y(\xi)) \in W$.

Optimal control. Extremal shift

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let $(t_*, x_*) \in W$, denote by w_* the nearest element of the section of W:

$$\min\{\|w - x_*\| : (t_*, w) \in W\} = \|x_* - w_*\|.$$

Let $u^e \in P$ satisfy the following condition:

 $\min_{u \in P} \max_{v \in Q} \langle x_* - w_*, f(t, x, u, v) \rangle = \max_{v \in Q} \langle x_* - w_*, f(t, x, u^e, v) \rangle.$

ション ふゆ マ キャット マックタン

Put $U^{e}(t_{*}, x_{*}) = u^{e}$.

u-stable bridges

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

• Programmed Iteration Method (A.G. Chentsov);

• Numerical Methods (V.S. Patsko et al, V.N. Ushakov et al).

ション ふゆ く は く は く む く む く し く

Problem of Degree

Game Reconstruction

Yurii Averboukł

Differential game

Viscosity solutions

Inverse problem

Examples

Lower Value

$$\Gamma_*(t_*, x_*, U) \triangleq \limsup_{d(\Delta) \downarrow 0, (t^*, x^*) \to (t_*, x_*)} \sup_{v[\cdot]} \gamma(x^1[\cdot, t^*, x^*, U, \Delta, v[\cdot]]).$$

$$\operatorname{Val}_*(t_*, x_*) \triangleq \inf_U \Gamma_*(t_*, x_*, U).$$

Upper Value

 $\Gamma^*(t_*, x_*, U) \triangleq \liminf_{d(\Delta) \downarrow 0, (t^*, x^*) \to (t_*, x_*)} \inf_{v[\cdot]} \gamma(x^2[\cdot, t^*, x^*, V, \Delta, u[\cdot]]).$ $\operatorname{Val}^*(t_*, x_*) \triangleq \sup_{V} \Gamma^*(t_*, x_*, V).$

ション ふゆ マ キャット マックシン

Problem of Degree

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Alternative theorem states that there exists the value of the game

$$Val(t_*, x_*) = Val_*(t_*, x_*) = Val^*(t_*, x_*).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

If Isaacs condition is not valid

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

All statements remain valid if we substitute strategies of the player U with counterstrategies of the player U.

ション ふゆ く は く は く む く む く し く

Counterstrategy

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

The function $U: [t_0, \vartheta_0] \times \mathbb{R}^n \times Q \to P$ is called *counterstrategy*. It is a function of t, x and v.

Step-by-step motion

Let (t_*, x_*) be an initial position, $\Delta = \{t_* = t_0 < t_1 \leq \ldots \leq t_m = \vartheta_0\}$. Step-by-step motion is a solution of the equations

$$\begin{aligned} x[t] &= x[\tau_{i-1}] + \int_{\tau_{i-1}}^{t} f(\xi, x[\xi], U(\tau_{i-1}, x[\tau_{i-1}], v[\xi]), v[\xi]) d\xi, \\ t &\in [\tau_{i-1}, \tau_i], \ x[\tau_0] = x_*. \end{aligned}$$

Condition

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Further we consider only Problems of Degree!

For simplicity let us assume that payoff is $\sigma(x(\vartheta_0))$.

ション ふゆ く は く は く む く む く し く

Hamiltonian

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

$$H(t, x, s) \triangleq \max_{v \in Q} \min_{u \in P} \langle s, f(t, x, u, v) \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Isaacs-Bellman Equation

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Equation:

$$\frac{\partial \varphi(t,x)}{\partial t} + H\left(t,x,\frac{\partial \varphi(t,x)}{\partial x}\right) = 0;$$

Boundary condition:

$$\varphi(\vartheta_0, x) = \sigma(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Minimax Solution

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Function φ is a *minimax solution* if for all $(t, x) \in (t_0, \vartheta_0) \times \mathbb{R}^n$ the following inequalities hold:

$$\begin{split} & a + H(t, x, s) \leq 0 \; \forall (a, s) \in D_{\mathrm{D}}^{-}\varphi(t, x); \\ & a + H(t, x, s) \geq 0 \; \forall (a, s) \in D_{\mathrm{D}}^{+}\varphi(t, x); \end{split}$$

Dini Differentials

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

Dini Subdifferential

$$\begin{split} D_{\mathrm{D}}^{-}\varphi(t,x) &\triangleq \Big\{ (a,s) \subset \mathbb{R} \times \mathbb{R}^{n} : \forall (\tau,g) \in \mathbb{R} \times \mathbb{R}^{n} \\ a\tau + \langle s,g \rangle \leq \liminf_{\alpha \to 0} \frac{\varphi(t+\alpha\tau,x+\alpha g) - \varphi(t,x)}{\alpha} \Big\}. \end{split}$$

Dini Superdifferential

$$\begin{split} D_{\mathrm{D}}^{+}\varphi(t,x) &\triangleq \Big\{ (a,s) \subset \mathbb{R} \times \mathbb{R}^{n} : \forall (\tau,g) \in \mathbb{R} \times \mathbb{R}^{n} \\ a\tau + \langle s,g \rangle \geq \limsup_{\alpha \to 0} \frac{\varphi(t+\alpha\tau,x+\alpha g) - \varphi(t,x)}{\alpha} \Big\}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Property

Game Reconstruction

Yurii Averboukl

Differentia game

Viscosity solutions

Inverse problem

Examples

If $D^-_{\rm D}\varphi(t,x)\neq \varnothing$ and $D^+_{\rm D}\varphi(t,x)\neq \varnothing$ simultaneously, then $(t,x)\in J$ and

$$D_{\mathbf{D}}^{-}\varphi(t,x) = D_{\mathbf{D}}^{+}\varphi(t,x) = \{(\partial\varphi(t,x)/\partial t, \nabla\varphi(t,x))\}.$$

Here

- $(\partial \varphi(t, x) / \partial t, \nabla \varphi(t, x))$ is total derivative;
- J denotes the set of points x at which function φ is differentiable. By the Rademacher's theorem measure $[t_0, \vartheta_0] \times \mathbb{R}^n \setminus J$ is 0.

うつう 山田 エル・エー・ 山田 うらう

Connection with Clarke Subdifferential

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

$$\begin{split} & \textit{Clarke subdifferential} \\ & \partial_{\mathrm{Cl}}\varphi(t,x) = \mathrm{co}\{(a,s): \exists \{t_i,x_i\}_{i=1}^\infty \subset J: \\ & a = \lim_{i \to \infty} \partial\varphi(t_i,x_i) / \partial t, \; s = \lim_{i \to \infty} \nabla\varphi(t_i,x_i) \}. \end{split}$$

Inclusions

 $D_{\mathrm{D}}^-\varphi(t,x)\subset \partial_{\mathrm{Cl}}\varphi(t,x),\ D_{\mathrm{D}}^+\varphi(t,x)\subset \partial_{\mathrm{Cl}}\varphi(t,x).$

ション ふゆ く は く は く む く む く し く

Inverse Problem

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

 $\mathbf{Examples}$

Let $\varphi : [t_0, \vartheta_0] \times \mathbb{R}^n \to \mathbb{R}$ be local Lipschitz continuous function such that $\varphi(\vartheta_0, \cdot)$ satisfies the sublinear growth condition.

Design finitely dimensional compacts P and Q, dynamic function fand payoff function σ such that function $\varphi(\cdot, \cdot)$ is a value of differential game

 $\dot{x} = f(t, x, u, v), \ t \in [t_0, \vartheta_0], \ x \in \mathbb{R}, u \in P, \ v \in Q$

うして ふゆう ふほう ふほう ふしつ

with payoff functional $\sigma(x(\vartheta_0))$.

Conditions

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Conditions on f

F1. f and g are continuous;

F2. f and g are locally Lipschitz continuous with respect to x;

F3. for all
$$t \in [t_0, \vartheta_0], x \in \mathbb{R}^n, u \in P, v \in Q$$

$$||f(t, x, u, v)||, |g(t, x, u, v)| \le \Lambda_f (1 + ||x||).$$

ション ふゆ く は く は く む く む く し く

Conditions on σ

Σ1. *σ* is locally Lipschitz continuous; Σ2. for all $x \in \mathbb{R}^n$ $|σ(x)| ≤ Λ_σ(1 + ||x||).$

Properties of Hamiltionian

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

- H1. (sublinear growth condition) for all $(t, x, s) \in [t_0, \vartheta_0] \times \mathbb{R}^n \times \mathbb{R}^n$ $|H(t, x, s)| \leq \Lambda_f ||s||(1 + ||x||);$
- H2. for every bounded region $A \subset \mathbb{R}^n$ there exist function $\omega_A \in \Omega$ and constant L_A such that for all $(t', x', s'), (t'', x'', s'') \in [t_0, \vartheta_0] \times A \times \mathbb{R}^n$ the following inequality holds: $\|H(t', x', s') - H(t'', x'', s'')\| \leq \leq \omega(t' - t'') + L_A \|x' - x''\| + + \Lambda_f (1 + \inf\{\|x'\|, \|x''\|\}) \|s_1 - s_2\|;$
- H3. H is positively homogeneous with respect to the third variable: if $\alpha \geq 0$ then

$$H(t, x, \alpha s) = \alpha H(t, x, s).$$

Algorithm

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

- Design a set $\mathbb{E} \subset [t_0, \vartheta_0] \times \mathbb{R}^n \times \mathbb{R}^n$ and function $h : \mathbb{E} \to \mathbb{R}$ in accordance with the function φ .
- **2** If the set \mathbb{E} and functions h and φ satisfy some conditions, function φ is a value of some differential game.
- **3** Extend h to the whole space $[t_0, \vartheta_0] \times \mathbb{R}^n \times \mathbb{R}^n$.
- **4** Design control spaces P, Q and a dynamical function f in accordance with the extension of h.

Steps 3 and 4 can be realize in general way or with the help of some heuristics.

The set \mathbb{E}

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

 $\mathbb{E} = \mathbb{E}_1 \cup \mathbb{E}_2;$ $\mathbb{E}_i = \{(t, x, s) : (t, x) \in [t_0, \vartheta_0] \times \mathbb{R}^n, s \in E_i(t, x)\} \quad i = 1, 2.$ Set-valued maps $E_1(t, x)$ and $E_2(t, x)$ are defined below.

ション ふゆ く は く は く む く む く し く

Points of Differentiability

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let $(t, x) \in J$. Put

$$\begin{split} E_1(t,x) &\triangleq \{\nabla \varphi(t,x)\};\\ h(t,x,\nabla \varphi(t,x)) &\triangleq -\frac{\partial \varphi(t,x)}{\partial t}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Condition (E1)

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

For any position $(t_*, x_*) \notin J$ and any sequences $\{(t'_i, x'_i)\}_{i=1}^{\infty}$, $\{(t''_i, x''_i)\}_{i=1}^{\infty} \subset J$ such that $(t'_i, x'_i) \to (t_*, x_*), i \to \infty, (t''_i, x''_i) \to (t_*, x_*), i \to \infty$, the following implication holds:

$$\begin{split} (\lim_{i \to \infty} \nabla \varphi(t'_i, x'_i) &= \lim_{i \to \infty} \nabla \varphi(t''_i, x''_i)) \Rightarrow \\ (\lim_{i \to \infty} h(t'_i, x'_i, \nabla \varphi(t'_i, x'_i)) &= \lim_{i \to \infty} h(t''_i, x''_i, \nabla \varphi(t''_i, x''_i))). \end{split}$$

ション ふゆ マ キャット マックシン

Limit Directions

Game Reconstruction

L

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

tet
$$(t, x) \notin J$$
. Put
 $E_1(t, x) \triangleq \{s \in \mathbb{R}^n : \exists \{(t_i, x_i)\} \subset J :$
 $\lim_{i \to \infty} (t_i, x_i) = (t, x) \& \lim_{i \to \infty} \nabla \varphi(t_i, x_i) = s\}.$

 $E_1(t, x)$ is nonempty and bounded.

Hamiltonian in limit directions

$$\begin{split} h(t,x,s) &\triangleq \lim_{i \to \infty} h(t_i,x_i,\nabla\varphi(t_i,x_i)) \\ \forall \{(t_i,x_i)\} \subset J : \lim_{i \to \infty} (t_i,x_i) = (t,x) \& s = \lim_{i \to \infty} \nabla\varphi(t_i,x_i). \end{split}$$

Property

$$\partial_{\mathrm{Cl}}\varphi(t,x) = \mathrm{co}\{(-h(t,x,s),s) : s \in E_1(t,x)\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Designation

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

 $CJ^{-} \triangleq \{(t,x) \in (t_{0},\vartheta_{0}) \times \mathbb{R}^{n} \setminus J : D_{\mathrm{D}}^{-}\varphi((t,x)) \neq \varnothing\};$ $CJ^{+} \triangleq \{(t,x) \in (t_{0},\vartheta_{0}) \times \mathbb{R}^{n} \setminus J : D_{\mathrm{D}}^{+}\varphi((t,x)) \neq \varnothing\}.$ Property: $CJ^{-} \cap CJ^{+} = \varnothing.$

 $\begin{array}{l} & \text{ If } (t,x) \in CJ^-, \\ & E_2(t,x) \triangleq \{s \in \mathbb{R}^n : \exists a \in \mathbb{R} : (a,s) \in D^-_{\mathrm{D}}\varphi((t,x))\} \setminus E_1(t,x); \\ & \text{ if } (t,x) \in CJ^+, \\ & E_2(t,x) \triangleq \{s \in \mathbb{R}^n : \exists a \in \mathbb{R} : (a,s) \in D^+_{\mathrm{D}}\varphi((t,x))\} \setminus E_1(t,x); \\ & \text{ if } (t,x) \in ([t_0,\vartheta_0] \times \mathbb{R}^n) \setminus (CJ^- \cup CJ^+) \\ & E_2(t,x) \triangleq \varnothing. \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Designation

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Multivalued Maps $E(t,x) \triangleq E_1(t,x) \cup E_2(t,x).$ $E^{\natural}(t,x) \triangleq \{ \|s\|^{-1}s : s \in E(t,x) \setminus \{0\} \}.$

Subsets of $[t_0, \vartheta_0] \times \mathbb{R}^n \times \mathbb{R}^n$

$$\begin{split} \mathbb{E}_1 &\triangleq \{(t,x,s): (t,x) \in [t_0,\vartheta_0] \times \mathbb{R}^n, \quad s \in E_1(t,x)\}, \\ \mathbb{E}_2 &\triangleq \{(t,x,s): (t,x) \in [t_0,\vartheta_0] \times \mathbb{R}^n, \quad s \in E_2(t,x)\}, \\ \mathbb{E} &\triangleq \mathbb{E}_1 \cup \mathbb{E}_2 = \{(t,x,s): (t,x) \in [t_0,\vartheta_0] \times \mathbb{R}^n, \quad s \in E(t,x)\}. \\ \mathbb{E}^{\natural} &\triangleq \{(t,x,s): (t,x) \in [t_0,\vartheta_0] \times \mathbb{R}^n, \quad s \in E^{\natural}(t,x)\}. \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Main Result

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let $\varphi : [t_0, \vartheta_0] \times \mathbb{R}^n \to \mathbb{R}$ be local lipschitzian function such that $\varphi(\vartheta_0, \cdot)$ satisfies sublinear growth condition. Function φ is a value of some differential game with terminal payoff if and only if the function h defined on \mathbb{E}_1 is extendable on the set \mathbb{E}_2 such that conditions (E1)–(E4) hold. (Conditions (E2)–(E4) are defined below.)

Condition (E2)

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

- If $(t,x) \in CJ^-$ then for any $s_1, \dots, s_{n+2} \in E_1(t,s)$ $\lambda_1, \dots, \lambda_{n+2} \in [0,1]$ such that $\sum \lambda_k = 1, (-\sum \lambda_k h(t,x,s_k), \sum \lambda_k s_k) \in D^- \varphi(t,x)$ the following inequality holds: $h\left(t, x, \sum_{k=1}^{n+2} \lambda_k s_k\right) \leq \sum_{k=1}^{n+2} \lambda_k h(t,x,s_k);$
- If $(t, x) \in CJ^+$ then for any $s_1, \ldots, s_{n+2} \in E_1(t, s)$ $\lambda_1, \ldots, \lambda_{n+2} \in [0, 1]$ such that $\sum \lambda_k = 1, (-\sum \lambda_k h(t, x, s_k), \sum \lambda_k s_k) \in D^+ \varphi(t, x)$ the following inequality holds:

$$h\left(t, x, \sum_{k=1}^{n+2} \lambda_k s_k\right) \ge \sum_{k=1}^{n+2} \lambda_k h(t, x, s_k);$$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Condition (E3)

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

• if
$$0 \in E(t, x)$$
, then $h(t, x, 0) = 0$;
• if $s_1 \in E(t, x)$ and $s_2 \in E(t, x)$ are codirectional (i.e.
 $\langle s_1, s_2 \rangle = ||s_1|| \cdot ||s_2||$), then
 $||s_2||h(t, x, s_1) = ||s_1||h(t, x, s_2).$

ション ふゆ く は く は く む く む く し く

Function $h^{\natural} : \mathbb{E}^{\natural} \to \mathbb{R}$ $\forall (t, x) \in [t_0, \vartheta_0] \times \mathbb{R}^n \ \forall s \in E(t, x) \setminus \{0\}$ $h^{\natural}(t, x, \|s\|^{-1}s) \triangleq \|s\|^{-1}h(t, x, s).$

Condition (E4)

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Sublinear growth condition: there exists $\Gamma > 0$ such that for any $(t, x, s) \in \mathbb{E}^{\natural}$ the following inequality is fulfilled

 $h^{\natural}(t, x, s) \leq \Gamma(1 + ||x||).$

Difference estimate:

For every bounded region $A \subset \mathbb{R}^n$ there exist $L_A > 0$ and modulus of continuity ω_A such that for any $(t', x', s'), (t'', x'', s'') \in \mathbb{E}^{\natural} \cap [t_0, \vartheta_0] \times A \times \mathbb{R}^n$ the following inequality is fulfilled

 $\begin{aligned} |h^{\natural}(t',x',s') - h^{\natural}(t'',x'',s'')| &\leq \omega_A(t'-t'') + \\ &+ L_A \|x'-x''\| + \Gamma(1+\inf\{\|x'\|,\|x''\|\}) \|s'-s''\|. \end{aligned}$

A method of extension

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

Suppose that h as function defined on \mathbb{E}_1 satisfies condition (E1). Suppose also that the extension of h on \mathbb{E}_2 given by the following rule is well defined: for all $(t, x) \in CJ^- \cup CJ^+$, $s \in E_2(t, x)$, $s_1, \ldots, s_{n+2} \in E_1(t, x), \lambda_1, \ldots, \lambda_{n+2} \in [0, 1]$ such that $\sum \lambda_i = 1$ $\sum \lambda_i s_i = s$ $\frac{n+2}{2}$

$$h(t, x, s) \triangleq \sum_{i=1}^{n+1} \lambda_i h(t, x, s_i).$$

If function $h : \mathbb{E} \to \mathbb{R}$ satisfies conditions (E3) and (E4), then φ is a value of some differential game with terminal payoff functional.

Scheme of Proof

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Step 0

Define payoff functional by formula $\sigma(\cdot) \triangleq \varphi(\vartheta_0, \cdot)$

Step 1

- Extend function h^{\natural} defined on \mathbb{E}^{\natural} to the set $[t_0, \vartheta_0] \times \mathbb{R}^n \times S^{(n-1)}$. $(S^{(k)} \text{ is } k\text{-dimensional sphere})$. Denote this extension by h^* .
- Design the positively homogeneous function $H: [t_0, \vartheta_0] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ which is an extension of h^* .

Step 2

Design finitely dimensional compacts P, Q and function f in accordance with H.

Positive Example

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Let
$$n = 2, t_0 = 0, \vartheta_0 = 1$$
.
 $\varphi_1(t, x_1, x_2) = t + |x_1| - |x_2|$.

Function h

For
$$x_1, x_2 \neq 0$$
 $h(t, x_1, x_2; \operatorname{sgn} x_1, \operatorname{sgn} x_2) = -1.$
For $x_1 = 0, x_2 \neq 0$ $h(t, 0, x_2; \pm 1, \operatorname{sgn} x_2) = -1.$
For $x_1 \neq 0, x_2 = 0$ $h(t, x_1, 0; \operatorname{sgn} x_1, \pm 1) = -1.$
For $x_1 = x_2 = 0$ $h(t, 0, 0; \pm 1, \pm 1) = -1.$

Sets

$$\begin{split} J &= \{(t,x_1,x_2): x_1x_2 \neq 0\},\\ CJ^- &= \{(t,0,x_2): x_2 \neq 0\},\\ CJ^+ &= \{(t,x_1,0): x_1 \neq 0\}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Specific Method of Reconstruction

 $u_0 \in \{0,1\}, u_1, u_2 \in [-1,1].$

ション ふゆ マ キャット マックシン

Negative Example

Game Reconstruction

Yurii Averboukh

Differentia game

Viscosity solutions

Inverse problem

Examples

Let
$$n = 2, t_0 = 0, \vartheta_0 = 1.$$

 $\varphi_2(t, x_1, x_2) = t(|x_1| - |x_2|).$

Analysis

$$\begin{aligned} J &= \{(t, x_1, x_2) : t \in (0, 1), x_1 x_2 \neq 0\}. \\ \text{For } (t, x) &\in J \quad E(t, x) = \{(t \cdot \text{sgn} x_1, t \cdot \text{sgn} x_2)\}. \\ &\quad h(t, x_1, x_2; t \cdot \text{sgn} x_1, t \cdot \text{sgn} x_2) = |x_1| - |x_2|. \end{aligned}$$

$$\begin{split} \mathbb{E}_0 &\triangleq \{(t, x_1, x_2; t \mathrm{sgn} x_1, t \mathrm{sgn} x_2) : (t, x_1, x_2) \in J\}.\\ \mathbb{E}_0^{\natural} &\triangleq \{(t, x_1, x_2; \mathrm{sgn} x_1/\sqrt{2}, \mathrm{sgn} x_2/\sqrt{2}) : (t, x_1, x_2) \in J\}. \end{split}$$

If
$$(t, x_1, x_2) \in J$$

 $h^{\natural}(t, x_1, x_2; \operatorname{sgn} x_1/\sqrt{2}, t \operatorname{sgn} x_2/\sqrt{2}) = \frac{|x_1| - |x_2|}{\sqrt{2}t}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Bibliography

Game Reconstruction

Yurii Averboukh

Differential game

Viscosity solutions

Inverse problem

Examples

Subbotin A.I. Generalized solutions of first-order PDEs. The dynamical perspective, Systems & Control: Foundations & Applications, Birkhauser, Boston, Ins., Boston MA, 1995

Bardi M, Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia, Boston. Systems & Control: Foundations & Applications. Birkhauser Boston, Inc. 1997, xviii+570 pp.

Demyanov V.F., Rubinov A.M. Foundations of Nonsmooth Analysis, and Quasidifferential Calculus, Optimization and Operation Research, v. 23, Nauka, Moscow, 1990, 431pp.

McShane E. J. Extension of range of function // Bull.Amer.Math.Soc. 1934. V. 40. nïS12, Pp 837–842.

Evans L.C., Souganidis P.E. Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs Equations // Indiana University Mathematical Journal, 1984, Vol. 33, N 5, Pp. 773–797.