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Nonzero-sum differential game

ẋ = f(t, x, u, v), t ∈ [t0, ϑ0], x ∈ Rn, u ∈ P, v ∈ Q.

Here u and v are controls of the player I and the player II
respectively.

The player I wants to maximize σ1(x(ϑ0)).
The player II wants to maximize σ2(x(ϑ0)).
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Conditions

The sets P and Q are compacts.
The functions f , σ1 and σ2 are continuous;
The function f is locally Lipschitz continuous with respect to
the phase variable
The function f satisfies the sublinear growth condition with
respect to x
Isaacs condition holds.
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N.N. Krasovskii discontinuous feedback
formalization

The strategy of the player I: U = (u(t, x, ε1), β1(ε1)).
The strategy of the player II: V = (v(t, x, ε2), β2(ε2)).

ε1 and ε2 are precision parameters of the players.
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Control design

The player I chooses a precision parameter ε1 and a partition
∆1 = {t′i}mi=0.
u(t) = u(t′i, x[t′i], ε1), t ∈ [t′i, t

′
i+1).

The player II chooses a precision parameter ε2 and a
partition ∆2 = {t′′i }ri=0.
v(t) = v(t′′i , x[t′′i ], ε2), t ∈ [t′′i , t

′′
i+1).

Fineness(∆i)≤ βi(εi), i = 1, 2.
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Bundles of motions

N.N. Krasovskii [Game-Theoretical Control Problems],
A.F. Kleimenov [Non zero-sum differential games]

Step-by-step motion.
Consistent step-by-step motion ε1 = ε2.
Set of constructive motions X(t∗, x∗;U, V ).
Set of consistent constructive motions Xc(t∗, x∗;U, V ).

Any limit of a sequence of (consistent) step-by-step motions is
called (consistent) constructive motions.
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Nash equilibrium

The pair of strategies UN and V N is said to be Nash equilibrium
solution at the position (t∗, x∗), if for all strategies U and V the
following inequalities hold:

max{σ1(x[ϑ0]) : x[·] ∈ X(t∗, x∗;U, V
N )} ≤

≤ min{σ1(xc[ϑ0]) : xc[·] ∈ Xc(t∗, x∗;U
N , V N )}.

max{σ2(x[ϑ0]) : x[·] ∈ X(t∗, x∗;U
N , V )} ≤

≤ min{σ2(xc[ϑ0]) : xc[·] ∈ Xc(t∗, x∗;U
N , V N )}.
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Nash equilibrium

Nash value of the game is

N (t∗, x∗) = {(σ1(x[ϑ0]), σ2(x[ϑ0])) : x[·] ∈ Xc(t∗, x∗;U
N , V N ).

Properties:
The set N (t∗, x∗) is nonempty.
In general N (t∗, x∗) contains infinitely many couples.
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Auxiliary zero-sum games

Game Γ1: The player I wants to maximize σ1(x(ϑ0)), the
purpose of the player II is opposite. Denote the value of this
game by ω1 : [t0, ϑ0]× Rn → R.

Game Γ2: The player II wants to maximize σ2(x(ϑ0)), the
purpose of the player I is opposite. Denote the value of this
game by ω2 : [t0, ϑ0]× Rn → R.
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Auxiliary differential inclusion

ẋ ∈ F(t, x) , co{f(t, x, u, v) : u ∈ P, v ∈ Q}

By Sol(t∗, x∗) denote the set of its solution with initial data
x(t∗) = x∗.



Nonsmooth
analysis and

Nash
equlibrium

Yurii
Averboukh

Preliminaries

Nash value
of the game

Nonsmooth
analysis

Sufficient
condition

Example

Multivalued map

Statement
Let a multivalued map T : [t0, ϑ0]× Rn → P(R2) satisfy the
following conditions

(N1) T (ϑ0, x) = {(σ1(x), σ2(x))} for all x ∈ Rn;

(N2) T (t, x) ⊂ [ω1(t, x),∞)× [ω2(t, x),∞) for all
(t, x) ∈ [t0, ϑ0]× Rn;

(N3) for all (t∗, x∗) ∈ [t0, ϑ0]× Rn, (J1, J2) ∈ T (t∗, x∗) there
exists y(·) ∈ Sol(t∗, x∗) such that

(J1, J2) ∈ T (t, y(t)) t ∈ [t∗, ϑ0].

Then T (t, x) ⊂ N (t, x) for all (t, x) ∈ [t0, ϑ0]× Rn.

The multivalued map N satisfies the conditions (N1)–(N3).
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Semicontinuous maps

Definition. The multivalued map T is upper semicontinuous by
inclusion if its graph is closed.

Property. The multivalued map N is upper semicontinuous by
inclusion.
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Characterization in the terms of weak invariance

Theorem 1
Let T : [t0, ϑ0]× Rn → P(R2) be upper semicontinuous by
inclusion.

Condition (N3) is fulfilled if and only if
for any (t∗, x∗) ∈ [t0, ϑ0]× Rn and (J1, J2) ∈ T (t∗, x∗) there exist
θ > t∗ and y(·) ∈ Sol(t∗, x∗) such that

(J1, J2) ∈ T (t, y(t)), t ∈ [t∗, θ].
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Derivative of multivalued map

Distance:
Let A ⊂ R2,

dist[(J1, J2), A] , inf {|ζ1 − J1|+ |ζ2 − J2| : (ζ1, ζ2) ∈ A} .

Directional derivative of the multivalued map:

DHT (t, x; (J1, J2), w) , lim inf
δ↓0,w′→w

dist[(J1, J2), T (t+ δ, x+ δw′)]

δ
.
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Characterization in the terms of nonsmooth
analysis

Theorem 2
Let T : [t0, ϑ0]× Rn → P(R2) be upper semicontinuous by
inclusion.

Condition (N3) is valid if and only if for any (t, x) ∈ [t0, ϑ0]× Rn

sup
(J1,J2)∈T (t,x)

inf
w∈F(t,x)

DHT (t, x; (J1, J2), w) = 0.
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Sufficient condition

Let (c1, c2) : [t0, ϑ0]× Rn → R2 be a continuous function.

Is (c1(t, x), c2(t, x)) a Nash equilibrium payoff?
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Definitions

Modulus derivative:

dabs(c1, c2)(t, x;w) , lim inf
δ↓0,w′→w

|c1(t+ δ, x+ δw′)− c1(t, x)|+ |c2(t+ δ, x+ δw′)− c2(t, x)|
δ

.

Auxiliary Hamiltonians:

H1(t, x, s) , max
u∈P

min
v∈Q
〈s, f(t, x, u, v)〉,

H2(t, x, s) , min
u∈P

max
v∈Q
〈s, f(t, x, u, v)〉.
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Sufficient condition in the infinitesimal form

Theorem 3
Suppose that

(c1(ϑ0, ·), c2(ϑ0, ·)) = (σ1(·), σ2(·));
The functions ci are the upper solution of the equations

∂ci
∂t

+Hi(t, x,∇ci) = 0, i = 1, 2,

for all (t, x) ∈ [t0, ϑ0]× Rn

inf
w∈F(t,x)

dabs(c1, c2)(t, x;w) = 0.

Then (c1(t, x), c2(t, x)) a Nash equilibrium payoff for all
(t, x) ∈ [t0, ϑ0]× Rn.
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Connection with the system of HJ PDEs

Hi(t, x, s1, s2) , 〈si, f(t, x, un, vn)〉, i = 1, 2.

max
u∈P
〈s1, f(t, x, u, vn)〉 = 〈s1, f(t, x, un, vn)〉,

max
v∈Q
〈s2, f(t, x, un, v)〉 = 〈s2, f(t, x, un, vn)〉.
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Connection with the system of HJ PDEs

Statement
If the function (ϕ1, ϕ2) is a solution of the system

∂ϕi
∂t

+Hi(t, x,∇ϕ1,∇ϕ2) = 0, i = 1, 2.

Then (ϕ1, ϕ2) satisfies the conditions of Theorem 3.
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Example. The game

{
ẋ = u
ẏ = v

t ∈ [0, 1], u, v ∈ [−1, 1].

The player I wants to maximize σ1(x, y) , −|x− y|.
The player II wants to maximize σ2(x, y) , y.
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Case y∗ > x∗

N (t, x∗, y∗) =

{(−|x∗ − y∗|, y∗ + (1− t))}.

-
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Case x∗ ≥ y∗

N (t, x∗, y∗) =

[−|x∗ − y∗|,
min{−|x∗ − y∗|+ 2(1− t), 0}]×
{y∗ + (1− t)}.

-
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System of Hamilton-Jacobi equations

{ ∂ϕ1

∂t + ∂ϕ1

∂x u
n(t, x, y) + ∂ϕ1

∂y v
n(t, x, y) = 0

∂ϕ2

∂t + ∂ϕ2

∂x u
n(t, x, y) + ∂ϕ2

∂y v
n(t, x, y) = 0.

Boundary condition: ϕ1(1, x, y) = −|x− y|, ϕ2(1, x, y) = y.

Here un(t, x, y) and vn(t, x, y) satisfy the conditions

∂ϕ1

∂x
un(t, x, y) = max

u∈P

[
∂ϕ1

∂x
u

]
,
∂ϕ1

∂x
vn(t, x, y) = max

u∈P

[
∂ϕ1

∂x
v

]
.

There is no classical solution.
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System of Hamilton-Jacobi equations

Viscosity solution

ϕ1(t, x, y) =

 x− y, x ≤ y,
−x+ y + 2(1− t), x > y,−x+ y + 2(1− t) < 0,
0, x > y,−x+ y + 2(1− t) ≥ 0

ϕ2(t, x, y) = y + (1− t).

The couple (ϕ1(t, x∗, y∗), ϕ2(t, x∗, y∗)) is maximum Nash equilibrium
payoff at the position (t, x∗, y∗).
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Functions providing Nash equilibria

cγ1(t, x∗, y∗) =

{
−|x− y|, y ≥ x;

min{−|x− y|+ γ(1− t); 0}, y < x

c2(t, x, y) = y + (1− t).

The function (cγ1 , c2) satisfies the conditions of the Theorem 3 for
γ ∈ [0, 2].
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