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Abstract
Visualization of viral evolution is one of the essential tasks in bioinformatics, through which virologists
characterize a virus. The fundamental visualization tool for such a task is constructing a dendrogram,
also called the phylogenetic tree. In this paper, we propose the visualization and characterization of
the evolutionary path, starting from the root to isolated virus in the leaf of the phylogenetic tree. The
suggested approach constructs the sequences of inner nodes (ancestors) within the phylogenetic tree and
uses one-hot-encoding to represent the genetic sequence in a binary format. By employing embedding
methods, such as multi-dimensional scaling, we project the path into 2D and 3D spaces. The final
visualization demonstrates the dynamic of viral evolution locally (for an individual strain) and globally
(for all isolated viruses). The results suggest applications of our approach in: detecting earlier changes in
the characteristics of strains; exploring emerging novel strains; modeling antigenic evolution; and study
of evolution dynamics. All of these potential applications are critical in the fight against viruses.
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1. Introduction

Viruses are an integral part of human life. Some viruses, e.g., influenza, hepatitis, and HIV, pose
a severe threat to public health. Viruses affect not only public health, but also have serious
consequences for the economy. For this reason, the activity of viruses, especially the influenza
virus, is continuously monitored by the World Health Organization to study their evolution and
to combat them [1]. Beyond the influenza virus, the recently emergent COVID-19 pandemic has,
once again, reminded us of the importance of studying evolution and its hidden mechanisms.
The study of evolution, and characterization of causative agents, are crucial factors in vaccine
production. Evolution causes the virus to alter the structure and properties of antigens, through
gradual accumulation of genetic mutations, leading to escape from immune responses [2]. This
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leads to loss of vaccine efficacy and to revision requirements. Therefore, studies of antigen
evolution are an essential part of the strategy in fighting viruses.

Visualization aims at providing a new scientific understanding, or viewpoint, that allows the
researcher to better observe, explore, or receive insight from data [3]. A phylogenetic tree is
a representation of evolutionary history. It is one of the most fundamental data structures in
biology, showing a compact form of evolution through similarities and differences between
genetic sequences [4]. In fact, the tree data structure transforms the complex evolutionary
relationships between species into a graphic, human-readable representation [5].

Mainly, the phylogenetic tree is constructed through two steps: computing a distance matrix;
and inferring a tree topology from the matrix. Various models, such as Kimura-80 (K80) [6],
have been developed previously to compute the distance matrix from a set of genetic sequences.
Construction of a tree structure relies on clustering the species based on their distances. The
clustering can be carried out by different algorithms, including classical methods, such as
neighbor-joining [7], Fitch–Margoliash [8], etc. The phylogenetic tree is a branching diagram,
which can be represented in a variety of forms, e.g., rooted/unrooted, circular tree, cladogram
[9], phylogram [10], and coral of life [11].

The phylogenetic tree can be directly used in modeling antigenic evolution. Successful
examples of such applications have been presented [12, 13]. The idea relies on employing the
relationship between the paths on the tree (which connects the pair of reference and test viruses)
and their associated hemagglutinin inhibition assay data for modeling. Another example of
the application of visualization for modeling was proposed by Ito et al. [14]. Their approach
relies on predicting the evolutionary direction and identifying the viruses near the direction
that can spread in the upcoming season. The key idea of their approach is constructing a
three-dimensional map from the hemagglutinin sequences of the H3N2 subtype. The map is
created by computing the genetic distance matrix and applying embedding algorithms, such as
multidimensional scaling (MDS) [15], to project the distance matrix space of the viruses into a
3D space. Their research indicates that viruses located near the evolutionary direction have
great vaccine potential and need to be the subject of further analysis.

As mentioned earlier, our goal is to visualize the evolutionary path of a strain over time. The
main idea of this paper is inspired by Rubik’s cube solving algorithms [16]. A solution path is
visualized from a random initial state to the final solution by the one-hot-encoding and t-SNE
method [17]. The evolutionary path is a path from the root to a leaf of the phylogenetic tree.
Implementing the visualization of such a path requires access to the tree’s genetic sequence of
internal nodes. This can be handled by reconstructing the ancestral sequences. Like a Rubik’s
cube visualization, we use the reverse evolutionary path, such that the root will be the final
solution. Therefore, each solution path starts from a leaf and ends at the root. By matching the
root coordinates, the final form of viral evolution for a tree is achieved.

Our contributions in this paper mainly focus on establishing a novel representation of the
evolutionary path, which can further be employed in other studies, such as antigenic evolution
modeling. The rest of the paper is organized as follows. Section 2 explains the proposed method
in more detail. Section 3 is devoted to experiment setup and results. Finally, the conclusion is
given in Section 4.



2. Methodology

Figure 1 illustrates the overall schema of our approach. The schema includes two main steps:
performing the phylogenetic analysis; and constructing the visualization. Each step is described
in more detail in the following sections.

Figure 1: Overall schema of the proposed approach. It contains two general steps: phylogenetic analysis;
and constructing the visualization.

Before performing any computations, it is necessary to conduct an alignment procedure
for selecting a fragment of the genetic sequence with maximum coverage of the information.
Alignment is an inseparable stage for constructing the phylogenetic tree in our task. Several
methods perform the alignment, among which Multiple Alignment using Fast Fourier Transform
(MAFFT) [18] is advantageous for large data sets. The aligned sequences file is further given to
the Randomized Axelerated Maximum Likelihood (RAxML) [19] program for generating the
phylogenetic tree. It is known that stochastic models (such as maximum-likelihood) are more
desirable for biological research, but they often suffer from low computational efficiency. The
main advantage of RAxML is its speed in parallel computation of the best maximum-likelihood
score; this makes it a suitable choice for working with large-scale data sets.

RAxML gives a wide choice of models, for both nucleotide and amino acid sequences, used
to generate the tree. Computing the ancestral sequences by RAxML requires a rooted tree.
Therefore, the next step is making a rooted from an unrooted tree by setting the flag ’-f I’ in
RAxML and constructing the ancestral sequences by setting the flag ’-f A’.

An evolutionary path starts from the root, passes to the internal nodes (ancestors), and ends
in an isolated strain (i.e., leaf of tree). Thus, the total amount of paths is equal to the number of
leaves in the tree. The first step in our visualization is encoding the genetic information of each



path. Since we use nucleotide sequences, the alphabet of which contains four nucleotides (A, C,
G, T) and gap (-), we apply the one-hot-encoding in Table 1 to represent the information in the
numerical domain:

Table 1
One-hot-encoding for converting the genetic information of nucleotide sequence into a binary sequence.

Letter Code
A (1,0,0,0)
C (0,1,0,0)
G (0,0,1,0)
T (0,0,0,1)

’-’ Gap (0,0,0,0)

Some positions in the sequence are conserved and non-informative, so we remove them from
the further computation. Finally, we obtain a binary matrix, whose rows indicate the nodes in
the path; its columns are the encoded genetic information. We apply the embedding method to
the matrix to project paths from multi-dimensional space into 2D or 3D spaces. Our preliminary
results indicated that the multi-dimensional scaling outperforms others among several methods
of visualization. The achieved 2D path is represented in the form of the Bezier curve in a 2D plot.
In the next section, we apply our computational pipeline (presented in Figure 1) to visualize the
evolutionary paths of the influenza virus.

3. Experiment Setup & Results

3.1. Data Preparation

We downloaded more than 90,000 nucleotide sequences of influenza virus subtype H3N2, isolated
from 1967-2021, from the GISAID database (Global Initiative on Sharing All Influenza Data) [20].
After filtering out duplicate entries, aligning sequences, cleaning the database, and removing
sequences with ambiguous nucleotides, we obtained more than 30,000 strains. The strains
further were sorted by their isolation year. A sample of up to 200 entries was selected for each
year. The final data set was created by gathering all samples, and it included about 5,000 strains
isolated in the period from 1968-2021. Note that some earlier years have less than 200 samples
after data preprocessing.

3.2. Constructing The Phylogenetic Tree

Maximum-likelihood tree construction consists of three sequential procedures: generating
initial, intermediate, and final trees. The initial maximum-likelihood tree was generated using
Fasttree [21] with the Juke-Cantor model. In contrast, RAxML was applied to create the
intermediate tree from the initial one with a generalized time-reversible (GTR) model and the
rapid hill-climbing mode. The obtained tree was evaluated under the GAMMA model of rate
heterogeneity modeling. Next, the final, refined maximum-likelihood tree was generated by
RAxML from the intermediate tree under GTR and GAMMA models.



3.3. Reconstructing Ancestral Sequences

In order to compute ancestral sequences by RAxML, the tree must be rooted. Since the final
tree was not rooted, we apply RAxML with the flag ’-f I’ to generate the rooted version. The
child-parent relationship between tree nodes was extracted using ’Phylo’ modules from the
Biopython package[22].

3.4. Visualization

The child-parent relationship allows us to create the evolutionary path, which starts from
the root and ends in a tree leaf. We encode the genetic information of each path by applying
one-hot-encoding presented in the Methodology. We removed conserved sites, as they are not
informative. We embedded the multi-dimensional (encoded) representation of strains into 2D
space, to visualize paths, by employing MDS.

Given 𝑛 point 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} in a high dimensional space (𝑝 dimensions) and their
distance affinity matrix 𝐷, MDS aims to find point 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛} in a space of lower
dimension (𝑞 dimensions) such that:

min
𝑌

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑑𝑖,𝑗 − �̂�𝑖,𝑗)
2

Note that �̂� is the distance affinity matrix for points in lower dimensional space (containing
�̂�𝑖,𝑗 the distance between 𝑦𝑖, 𝑦𝑗).

Suppose an evolutionary path 𝑃 includes 𝑛 strains of length 𝐿 and is presented by vector:

𝑃𝑟𝑎𝑤 = [𝑋1, 𝑋2, ..., 𝑋𝑛]

where 𝑋𝑖, 𝑖 ∈ {1, 2, ..., 𝑛} represents the sequence of nucleotides as follows:

𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝐿]

where
𝑥𝑖,𝑗 ∈ {𝐴,𝐶,𝐺, 𝑇,−}, 𝑗 ∈ {1, 2, ..., 𝐿}

Since conserved amino acid positions are uninformative, they are removed from the sequence.
Suppose 𝑙 is the number of positions, each of which has at least one mutation. By applying the
one-hot-encoding from Table 1 to each strain, we obtain the encoded path:

𝑥𝑖,𝑗
Encoding−−−−−→ [𝑦𝑖,𝑒, 𝑦𝑖,𝑒+1, 𝑦𝑖,𝑒+2, 𝑦𝑖,𝑒+3]

𝑃𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = [𝑌1, 𝑌2, ..., 𝑌𝑛]

where
𝑌𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, ..., 𝑦𝑖,𝑘]

and
𝑦𝑖,𝑗 ∈ {0, 1}, 𝑖 ∈ {1, 2, ..., 𝑛}, 𝑗 ∈ {1, 2, ..., 𝑘}, 𝑘 = 𝑙 × 4



Each tree node (internal or terminal) can be represented as a point in high dimensional space
(𝑙 × 4 dimensions). We map the data points of the path from high dimensional space into 2D or
3D space by employing MDS:

𝑃𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 = [𝑍1, 𝑍2, ..., 𝑍𝑛]

where 𝑍𝑖 is either a 2D or 3D point. The final coordinates were further smoothed to form a
Bezier curve and visualized in a 2D plot. A typical rendering of evolutionary paths is presented
in Figure 2. Note that each path is individually embedded into the lower space. Thus the
visualization of a path is independent from others.

Figure 2: Visualization of evolutionary paths. Note that all paths start from the root, located at the
center of the plot.

In order to evaluate how ’genetically-close’ and ’genetically-far’ strains are characterized in
the new space, we visualized the paths of the closest and most distant strains of a randomly
selected year (2016) in Figure 3. Note that the closest strains have only a one-mutation difference.
This high degree of genetic similarity leads to almost the same curve and a slight change of
their positions. In contrast, from the right plot of Figure 3, as expected, we see that the more
differences between the genetic sequences, the more distance between their paths.

We applied four different algorithms to visualize the resultant Bezier curves of the sample
strains. The algorithms include multi-dimensional scaling, t-SNE, Isomap [23], and kernel
PCA [24]. A randomly selected sample of 200 strains was visualized by the aforementioned
embedding algorithms. We applied different values for hyperparameters of t-SNE method. In
our preliminary results, MDS outperformed others by providing a more clear, and less crowded,



(a) (b)

Figure 3: Visualization of evolutionary paths for (a) genetically-close and (b) genetically-far strains. As
expected, the plots show that close strains have a more similar path than far strains.

visualization. We believe a suitable choice of t-SNE hyperparameters may provide a better
visualization, which is the subject of our future work. It is worth mentioning that sometimes the
visualization includes outlier strains, which can be due to: low sequence quality; single events
that cause deleterious (for the virus) genetic variation; or false information about isolation date.
Although this happened rarely, we removed the paths of such strains from the visualization.

Visualization of evolutionary paths can be used to assess the variation among a set of
sequences. To demonstrate the power of such visualization, we plotted the paths of randomly
selected strains for the years 2001, 2008, and 2019. Figure 4 indicates that there are more
differences between the strains, and consequently their paths, in 2008. In contrast, the sample
strains in 2001 and 2019 feature more similar paths, forming clusters in the visualization.

To increase visualization quality, we provide an interactive 3D representation equipped with
virtual reality. It is built using Viewzavr, a framework for constructing visualizations. It connects
three levels of programming: a language level; visual programming; and an end-user interaction
(which is also considered programming). A randomly selected sample, of up to 100 paths from
each year, are plotted in Figure 5. The isolated strains (leaf of the phylogenetic tree) are presented
with orange spheres. This visualization is available online at github.com/viewzavr/vr-flu-galaxy.

Generally speaking, our results indicate that a comparison of two strains can be enhanced by
incorporating information on their ancestors. Thereby, such comparison does not individually
consider two strains, but it evaluates them in a chain of events, where each event represents an
ancestor. Indeed, the hierarchical differences between two strains can be reflected through their
paths. We believe that incorporating the evolutionary history of strains may provide a better
characterization and improve the quality of viral evolution modeling.

4. Conclusion

Analysis of viral evolution is essential in the fight against viruses. This paper proposes a
visualization method for viral evolution based on reconstructing the phylogenetic tree and
ancestral sequences. Our method projects an evolutionary path of the phylogenetic tree into

https://github.com/viewzavr/vr-flu-galaxy


Figure 4: Visualization of evolutionary paths for a randomly selected sample of 100 strains. Both 2001
and 2019 samples indicate more similarity between strains, while 2008 samples express more differences
between paths.

a 2D or 3D space by incorporating the genetic information of nodes located in the path. The
suggested method can serve as an exploratory tool to visually survey viral variation. The
hierarchical representation of a strain provides additional information, which may improve
the characterization of strains through their paths. The (euclidean) distance, between the
reference and test viruses in the low dimensional space, can be beneficial in modeling antigenic
evolution. From a technical perspective, the only considerable drawback to our approach is the
computational complexity of constructing a phylogenetic tree from a large number of viruses
and projecting its nodes from the high dimensional into the low dimensional space.

Although the paper’s case study is the influenza virus hemagglutinin protein, and our result
represents a partial visualization of its evolution, we plan to perform a more comprehensive
visualization using the entire genome. Note that the approach is easily extendable to other
viruses. In addition, alternative representations can be created by applying our method to amino
acid sequences, instead of nucleotides, and performing analysis with simplified amino acid
alphabets. This allows us to visualize and study evolution from various viewpoints, such as
hydrophobicity. Future work needs to be done to set appropriate criteria (metrics, limits, etc.)
that permit automatic assessment and recognition of regular versus irregular viral visualization
patterns.



Figure 5: An interactive, 3D visualization of evolutionary paths. The visualization was generated by
randomly selecting up to 100 strains from each year (1968-2020). Each isolated strain is indicated at the
end of the path by an orange sphere.
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