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Abstract 
The paper discusses elements of logical models of graphical user interfaces used in both 

universal and specialized scientific visualization systems. Criteria of expressiveness of pro-
gramming language that are discussed in “Structure and Interpretation of Computer Pro-
grams” book are applied to graphical interfaces. It is shown that graphical interfaces allow 
users to operate on the same digital substance and with the same logical approaches as in tex-
tual programming languages. Both give basic elements, allow their combination, and support 
the procedures of abstraction. Authors suggest considering these aspects when developing 
graphical interfaces. This perspective is applied to the following presentation of the paper. 
The idea of modifiers (also known as behaviors or effects) and the idea of extensions (also 
known as plugins, modules, and applications) are discussed. Some methods of programming 
of scene dynamics are presented. Also languages and ontologies of scientific visualization are 
discussed, e.g. models for editing visualization pipeline: adding data to projects, filtering of 
that data, and methods of description of data representation on screen. Finally, we discuss 
additional ideas on systems analysis of visualization systems.  

Keywords: scientific visualization, visualization system, logical model, user interface.  

 

1. Introduction 

Two kinds of visualization systems are applied to achieve the goals of scientific visualiza-
tion. They are universal visualization systems (general purpose systems) and specialized sys-
tems. Universal systems enable assembling (programming) the visualization pipeline from 
ready-made blocks. This approach has advantages. But universal systems have the following 
fundamental disadvantages. 

Firstly, when solving a particular visualization problem the user’s labor costs may be ex-
cessive for some tasks which could be automated. For instance, it would be possible to auto-
matically identify the type of file being opened and to depict a certain view (visualization 
method) selected by that type. But view selection usually requires a lingering walk through a 
non-trivial dialog window sequence. 

Secondly, a universal visualization system may not provide visualization methods needed 
to depict particular information. And the methods provided could hide the data features im-
portant for the given visualization task.  

In order to solve these problems, specialized visualization systems are being developed. 
They boost users’ productivity in solving their certain visualization problems and allow to 
emphasize exactly those features which are important for the certain task, ensuring visualiza-
tion correctness and informativity [1, 2]. 
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Note that real visualization systems exhibit features of both universal and specialized sys-
tems. The cause of this is that even specialized systems, developed to solve certain tasks, re-
quire further development during operation. They need improvements to meet new users’ 
needs. Those improvements are “aftercoded” by an expert in visualization system program-
ming. 

However the major part of such an “aftercoding” may be handed over to the users them-
selves, if they are provided with suitable tooling. Hence the universal visualization systems 
features are introduced into the specialized ones. In this way, users obtain an ability to con-
struct visualization algorithms, to build more diverse visual images, and to test more hypoth-
eses by themselves.  Potentially, that results in that the main goal of visualization – the un-
derstanding phenomenon under study – is achieved quicker and with better quality. 

This raises questions about the kinds of elements, logical models, and approaches which 
may be distinguished in existing universal systems and effectively reapplied in the develop-
ment of new visualization systems. We present our answers in this paper.  

2. Visualization programming options 
One can program visualization (or, more accurately stated, views, defined in [3]) using 

programming languages with text-based representation of code (textual PL), or with visual 
tools. Within both approaches, there are universal tools as well as specialized ones for differ-
ent tasks. We consider these options in more detail. 

Programming with universal textual programming languages: 
C1. Universal (general-purpose) codes. The program is being developed as a separate pro-

ject for a certain visualization task.  Small visualization problems are often solved in this way. 
The development using general-purpose PL is facilitated by programming libraries for 
graphics and visualization. For instance, those are Matplotlib, Kitware trame, Vedo.embl.es 
for the Python language, and Three.js, d3.js, Babylon.js for the JavaScript language. 

С2. Universal codes utilizing programming frameworks. Frameworks, unlike libraries, de-
termine the control flow of a program to a large extent, so they implement the inversion of 
control principle. Popular frameworks such as A-frame, Unity, and Unreal Engine may be re-
ferred to as this kind. Authors have developed several such frameworks, for example 
Sharpeye [19] and JUJ [20]. 

C3. Specialized codes. A visualization program is written in some domain-specific visuali-
zation language (DSL) such as Vega Grammar or VRML. 

The C1 and C2 options suit specialists in programming. Option С3 is also targeted at 
them, as a tool for labor automation. But the С3 option could be convenient for the users of 
visualization too. 

Visual programming: 
V1. First of all, these are visual programming environments based on graphs. When work-

ing in some system of that class, users place on the surface symbols of various entities, estab-
lish connections between them and configure the parameters of entities. The system of enti-
ties and their connections is being interpreted in some model of computation, for instance in 
a data flow model. As a result of this interpretation, the process implementing the desired 
visualization pipeline is formed. Examples of such environments are DataExplorer, Enso, 
XcluDev, and SciVi [13]. 

V2. Visual environments with strict models. Examples are well-known programs like 
Paraview, Visit, and Blender. In such environments, users often have no ability to insert arbi-
trary codes into the visualization pipeline, but they can customize (program) visualization, 
utilizing commands of a visual interface (buttons, menus, etc) or of a scripting subsystem 
within the programming model provided by the environment. 

Option V1 suits both users and specialists in visualization (however, it seems that special-
ists in programming prefer textual program representations usually). Option V2 suits more 
users of visualization rather than specialists. 



Let us additionally illustrate the theses on the gradual elaboration of visualization systems, 
stated in the introduction. The involvement of a specialist programmer in  visualization de-
velopment has the following specificity. The result of such a programmer's work usually is a 
program (specialized visualization system) solving the given task. But this program is not a 
programming tool itself. Its users will be able to load data, and the program will show pre-
constructed views and provide instruments to configure them. But, as a rule, this is what such 
a program is limited to, it does not go any further than configuration. 

For instance, users cannot append a new instance of some visual entity, say, a second co-
ordinate system, because the program assumes displaying only one instance of the coordinate 
system. If the users need to add quantitatively or qualitatively new views, they ought to ad-
dress these issues to the specialist, because mechanisms necessary for doing that are not in-
cluded in the program. 

The involvement of specialists in visualization development is a widespread practice. Its 
advantages are the extension of interdisciplinary dialogue, interaction, and information ex-
change. Its disadvantages are the dependency of a user on a specialist, the increased cost of 
development, and time delays. 

Those disadvantages might be leveled out by providing the users with tools for independ-
ent rapid solution of the new visualization problems emerging during research. 

So, our main interest during the present paper is in means enabling users to independently 
program their visualizations. Our experience with different options of such programming tells 
us to focus attention on the approaches to visual programming outlined in V2. The communi-
ty has worked out a number of methods of such programming during many years of the de-
velopment of computer graphic systems. We continue with the analysis of some of these 
methods.  

3. Expressiveness of visual languages 
Consider the user workflow from the following perspective. The user working with one or 

the other program builds a digital artifact in most cases. By the term digital artifact, we col-
lectively call information entities in digital form: text, video, presentation, database et cetera. 
A typical program with a graphical interface offers the user a visual language: the graphical 
interface itself and its semantic – logical interpretation of the user's actions. In this way, a us-
er working with a visualization system forms the visual images set necessary for him – by 
constructing a visualization pipeline. 

The structure consisting of an interface (representation) and its semantics resembles the 
traditional programming languages’ structure: source code (representation) and its seman-
tics. The necessary conditions of expressiveness are formulated for the latter, cf. [4, 5]. 

An expressive programming language has to possess the following features. 
S1. Primitive expressions, which represent the simplest entities the language is concerned 

with. 
S2. Means of combination, by which compound elements are built from simpler ones. 
S3. Means of abstraction, by which compound elements can be named and manipulated as 

units. 
The fuller PL implements features in the list S1-3 the more expressive it is. We may project 

these features on the users’ workflows in a program with graphical interfaces. That might lead 
to understanding the features which should be provided by the visual language (interface) of 
the program. The fuller these features comply with S1-3 the more expressive the program will 
be, hence the more results the users will be able to get working with this program. 

As an example, consider the workflow in PowerPoint. The user may enter different kinds of 
basic elementary visual objects: texts, pictures, geometric figures, animations. This is the S1 
feature. That objects can be combined into slides and can be joined into groups. This is the S2 
feature. The S3 feature, abstracting, is not fully implemented in PowerPoint but still is pre-
sented.  It is possible to select and copy groups of objects. One could think that those are ab-



stracting operations: many objects in a selection could be conceived as a whole. Note that 
changes in original constructions will not be mirrored in its copies. We believe it means that 
the feature of abstracting is not completely implemented on this level in PowerPoint: the pro-
cesses of user interactions are made not abstractable. 

The abstracting is implemented to the more complete extent on the presentations level. 
For example, a user can create a presentation design template and use it for different pro-
jects. Changes in that template will cause changes in presentations utilizing it. We might as-
sume that several visual languages are implemented in PowerPoint for workflows on different 
levels: for visual objects, for slides, for presentations, and for templates. In each of those lan-
guages PowerPoint implements features S1-3 to a different extent. 

Drawing parallels between textual PL and visual languages, among which we include 
graphical interfaces too, we may draw a conclusion that user building digital artifacts is en-
gaged in programming. Digital artifacts consist of entities similar to the entities described 
with codes in textual PL: basic elements and their combinations, abstractions, and their ap-
plications. We may confirm this conclusion with the fact that the same result can often be ob-
tained in both ways – with programming in textual PL and with working through visual lan-
guage as well. 

The S1-3 features can also be projected on graphical interfaces of programs for scientific 
visualization. Those features could be hardly found in simple visualization systems perform-
ing visualization within the limits of a strictly predefined view. More “advanced” systems im-
plement some of the S1-3 features. Universal visualization systems most fully manifest them.  

4. Modifiers 
Semantic of an advanced textual PL usually defines different means of combining entities: 

making data structures from separate values, passing arguments to subroutines calls, assem-
bling functions to reify interfaces, collecting classes and interfaces to build new classes, put-
ting computation in lazy or asynchronous (async/await) contexts et cetera. So different 
means of combining entities are also found in visual languages (particularly, in the languages 
of graphical interface). One of such means is the modifiers mechanism. The other names for 
this concept are components, effects, behaviors, styles. 

A modifier is an additional entity attached to the main entity. A modifier can affect the be-
havior of the main entity. That effect can be either cosmetic or substantial. Some examples of 
modifiers: 

1. The “follow the object” modifier parametrized by the target object controls the posi-
tion of its main object in such a way that the main object would stay adjacent to the target one 
as the target one moves. There are different methods to compute the position of the main ob-
ject: it may firmly maintain a fixed distance to the target object, or that distance may be elas-
tic. Such a modifier can be attached to different objects, for instance, to the camera object. 

2. The “section” modifier modifies the depiction of its main visual object in a way to dis-
play only the part of it, for instance, the part in a given semispace. The modifier can add a 
new visual object to the scene; for the given semispace example, the plane defines the section. 
Those objects may simplify the modifier parameters configuration via direct manipulation. 

3. The “terrain” modifier (in the Unity development environment [6], cf. fig. 1) is at-
tached to some plane object in the scene and provides an interface to form a hilly surface (its 
shape and texture) from that plane and to place the instances of plant models on that surface. 
Direct manipulation is applied: a user forms hills and places plants working directly with the 
visual image of the surface in the Unity editor’s main window. 

 



 
Figure 1 - Application of the “Terrain” modifier in the Unity environment. The graphical 
modifier interface is to the right, the “Terrain” tab. Interfaces of other “Transform” and  

“Terrain Collider” modifiers are visible nearby. To the bottom right there is the  
“Add Component” button to attach new modifiers. Image courtesy of A. E. Krokhaleva. 

 
The “Terrain” example demonstrates that a modifier may have an independent complex in-

terface and rich capabilities despite its subordinate to the main object role. 
Technically, a modifier is a complete software component interacting with its main object 

and with other modifiers attached to that object via certain interfaces. 
As an analogue of modifiers in textual PL one could consider mixins from the object-

oriented programming paradigm, which are equipped with parameters and being applied not 
only to classes but also to objects (instances of classes). Modifiers in the Compose Multiplat-
form (JetBrains) and SwiftUI (Apple) frameworks are another analogue. Programming with 
modifiers is an implementation of the “composition over inheritance” principle. 

In the ultimate case of programming with modifiers, the role of main objects narrows to 
the modifier containers with no other functionality. For instance, the Entity-Component-
System model [7, 8] is arranged this way. The objects are empty in that model, modifiers 
serve as labels and carriers for values, and the algorithmical layer is implemented within sys-
tems. Along with that, a user forms an independent set of active systems. 

A modifier may create other modifiers and attach them to the objects in order to imple-
ment its behavior. For instance, the A-Frame project relies on modifiers of that kind. The pro-
ject names them higher-order components (similar to higher-order functions), cf. [9]. 

Besides, we believe that modifiers are the method to implement uniformity of the elements 
of the user interface visual language. A modifier that is uniformly represented in a graphical 
interface for different types of objects indicates similar semantics for the user. By the way, 
same-looking modifiers may have different implementations for different types of objects. 

Many visual programming systems have an interesting ability to apply modifiers not only 
to individual objects but also to sets of objects. For instance, this may be implemented with 
the model of the user’s workflow in which: at first, an object from a library is placed on the 
project’s panel, on that panel modifiers are attached to the object and its properties are con-
figured; after that, individual instances of that construction produced on the project’s panel 
are created in the scene. Systems allow to visually form “proxy-classes” and create their in-
stances in that way. 

Visual modifiers in interfaces are split into categories sometimes. For instance, in the 
GDevelop environment, there are “behaviors” and “visual effects”. 

We believe that the use of modifiers amplifies the expressivity of the languages (not only 
visual) designed for digital artifacts creation. Modifiers facilitate user programming of indi-
vidual components of artifact, since generic elementary behaviors (modifications) of objects 



may be taken out to the special layers of the code or of the visual workspace and may be ap-
plied to different kinds of objects by the means of graphical or text-based user interfaces.  

5. Programming of the scene dynamics 
An interface for the construction of complex digital artifacts, which include scenes of visu-

alizations, should unfold in semantically different directions. The S1-3 features should be 
implemented in each of those directions to the necessary extent.  

In this section of the paper, we consider problems of programming the dynamics in visual-
ization scenes, that is, description of processes of the scene state changing: for instance, ani-
mation of depicted physical phenomenon evolution in time. 

We have assumed it was enough to implement components for the scene dynamics in the 
objects having been added to the scene or in their modifiers. Many game programming sys-
tems use such an approach. They provide a user-predefined set of behavioral modifiers. Ex-
amples of behavioral modifiers are the aforementioned “follow the object” modifier, the “ob-
ject of collision model” (known as collider) et cetera. Attaching such modifiers to objects one 
may append predefined kinds of behaviors to those objects. However, it has turned out that 
this approach was not suitable enough in practice to describe all necessary forms of dynamics 
in scenes. 

There are other approaches also. Dynamic behavior may be defined with functional de-
pendence of visual objects’s properties (parameters, variables) on “time”. For instance, in 
Unity, such a dependency is specified by selecting key points on the time axis and by defining 
properties values corresponding to those points. Animation clips are created with this pro-
cess. When switching to the “scene playback” mode those animations are enabled and being 
replayed in the cycle. The ability to abstract animations is also implemented in Unity. Clips 
may be grouped and merged into separate entities for further application to different objects.   

That is a convenient mechanism, but it does not allow to program all necessary anima-
tions. So Unity implements the animation controllers mechanism. It is based on finite au-
tomatons which describe switching between behaviors of an object under control, including 
switching between animation clips when changing states.  

Descriptions on the level of physical processes control are also used to program scene dy-
namics. For instance, cf. spacecraft control model [10] and the SimInTech environment [11, 
12]. 

The Entity-Component-System model [7, 8] is often used in games and simulators. That 
model assumes the binding “entities” to “components” and the implementation of dynamic 
processes in the form of “systems”. 

The data flow model is also used frequently. In such a model, the data flow defines the dy-
namics of the system (see the SciVi programming system is an example of that approach 
[13]).   

The hybrid approach may be also found among visual programming tools. In this approach 
elements of dynamics may be defined both for individual objects and for systems consisting 
of them. So, the GDevelop system [14] is based on “events” (“GDevelop events”). The user 
configures different elements of scene behavior by programming event handling. Program-
ming in graphical interface reduces to the creation of records in the event handling table, fig. 
2.    

 



 
Figure 2 – the event table appearance in the GDevelop environment. 

 
The table consists of two columns – event and reaction. Events can be both elementary: 

“the program starts”, “the button is pushed” et cetera, and emerging from complex condi-
tions: “the position of character matches the position of a coin”. Reactions are defined with 
lists of imperative constructions, such as “increase the value of the score variable by 10” or 
“remove the coin from the scene”. Unconditional actions can be placed into the table, they 
may be coded in the JavaScript language. The created table is processed from top to bottom 
row by row 60 times per second.  

Especially the following GDevelop features may be noted. 1) Reactions and conditions can 
have parameters described by expressions, which may contain calls of complex functions. The 
special wizards help to compose such expressions. 2) It is possible to create extensions (cf. 
Section 6). 3) Descriptions of behaviors can be attached not only to individual objects but to 
the groups of objects, defined by some condition: for instance, all objects of a given proxy-
class (cf. Section 4).  

 So, we see a spectrum of approaches to scene dynamics description. These approaches de-
spite diverse ontology give the user similar capabilities. We consider this as a sign of the pres-
ence of the more fundamental model for scene dynamics programming, which could be one of 
the variants of process calculus: communicating sequential processes [15] or pi-calculus [16]. 
It is also possible that the ideas of automata-based programming widely researched in the 
Russian scientific community may be of great use to solve the problems of scene dynamics 
programming. 

6. Extensions 
Extensions (also called add-ons, plugins, applications, modules, and packages) allow plac-

ing additional program functionality into external codes that a user can attach when it is re-
quired.  Extensions idea is often used in programs, including visualization systems, see for 
example QGIS plugins [17] and GDevelop extensions [18]. 

 



 
Figure 3. Attaching an extension in the QGIS geospatial visualization environment.  

The attachment is made in the context of the program, i.e. "activated" extensions are valid in 
all projects of a user. QGIS offers to install an extension from its list (called repository).  

Additionally, a user can add other repositories, as well as install an extension from an archive 
(Install from ZIP menu). 

 
The decision to attach an extension is made by a user, see the example in fig. 3. The at-

tachment process for a user takes place in some context: for example, in the context of the en-
tire program, or in the context of a particular project, or some part of a project. When a user 
has "attached" an extension, further interaction with it is carried out according to the follow-
ing model. 

The program typically passes control to an extension by providing some kind of Applica-
tion Programming Interface (API). When attached, an extension, having received control and 
an entry point to the API, can add entities to the program - for example, add new types of 
modifiers available to a user. When a user accesses entities implemented in the attached ex-
tension, it gains control and interacts with a user and his digital objects in a program project 
with some level of freedom. 

Sometimes the API allows for extension to change the graphical user interface (GUI) of a 
program. Using this, an extension can, for example, directly add menu items to the GUI. 

As a result of attaching an extension, a program becomes more “powerful". Additional 
types of objects, modifiers, elements of scene dynamics, etc. appear in it. Thus, the principle 
of additivity described in [5] is implemented. 

Usually, to attach an extension, a user selects it from the list. These lists can be formed in 
various ways. The list can be compiled by the software product vendor. In some cases, the 
vendors can form this list by implementing an "extension store". In this case, the list is ful-
filled by initiatives from extension manufacturers. For example, the Unity Asset Store, which 
distributes assets of various types, joined in packages, which actually are extensions. 

Sometimes the user is given the opportunity to maintain their list of extensions (e.g. “fa-
vorite” extensions) in the context of a user profile (perhaps in the cloud). This approach is 
implemented, for example, in the Google Tag Manager environment. 

A user can influence this list through directories in a local file system, or by utilizing a con-
figuration file, or through settings in a GUI. For example, in QGIS, the user can place the pro-
gram code of an extension in a special directory, and then such an extension appears in the 
GUI in the list of extensions which are available for attachment. QGIS also has the ability to 



"import" extensions from a zip archive using GUI. When imported, the extension archive is 
actually unpacked into that special directory. 

A program’s developer has the opportunity to attach extensions at the level of the source 
code of a program or project. Then the user does not need to initiate the attachment of the 
extension - the decision to attach it has already been made by the developer and all the neces-
sary actions for attachment are performed at the level of program codes. Based on this obser-
vation, we can assume that in the ideal design of a program with extensions, all types of pro-
gram entities: visual objects, modifiers, etc., are implemented in extensions, some of which 
are attached at the level of the program source codes, and some during program usage at the 
discretion of a user. 

Let's note the following interesting approach. The user interface of some programs dis-
plays the functionality of unattached extensions. When accessing it, the user receives a mes-
sage about the extension that implements this functionality and an offer to attach it. For ex-
ample, in the GDevelop environment, the available modifiers are "advertised" in the user in-
terface in such a way. 

We believe that extensions are analogues of modifiers on a different semantic level. Modi-
fiers are applied to scene objects, and extensions are applied to projects or to the user's work-
ing environment, to the program. Modifiers affect the behavior of objects in the scene, and 
extensions affect the behavior of the project or the program as a whole, providing new fea-
tures or affecting those already present in the program. 

Like modifiers, extensions are sometimes grouped according to purpose. Attachment pro-
cesses for different groups may have different user interfaces. 

7. Data sources, filters, plots 
Visualization systems, as a rule, visualize "data" (represented in the model of files, data 

streams, processes, network resources, etc.). They often allow configuring data visualization 
processes by adding data sources, filters, and visualization methods (plots), and establishing 
relations between them. This configuration is performed in virtual spaces which are often 
named projects. 

The user adds data by specifying the path to them in the local file system, or by dragging 
(drag-and-drop) in a graphical shell of an operating system, or by specifying a URL from the 
cloud or from another network resource, or, in general, by specifying an arbitrary pre-formed 
data set with some predefined protocol for accessing them.  

Some systems allow you to group sets of files by file name templates. Some sections of 
names described by such templates can be interpreted by the system as the values of parame-
ters of loaded objects (for example, time) and used in the construction of the scene and its 
dynamics (for example, to offer animation options). 

After adding data in one way or another, a data artifact appears in the project along with 
its connection to the source of this data. In the simplest case, the entire data is copied and be-
comes an integral part of the project. Data can be of various types – for example, triangular 
meshes, tabular data, scalar and vector fields, and others. If not one artifact is loaded, but a 
set, then somewhere in the user interface there is an opportunity to select the current element 
of the set. 

When adding a visualization method, the program can take into account which data it can 
be applied to. For example, in the Visit system, there is a concept of current data – this is the 
currently selected data artifact from the list of previously added artifacts to the project. Dur-
ing the addition of a visualization method, only methods compatible with the current data 
type are displayed in the list of available methods. Once the user confirms the addition of a 
visualization method, the relationship of this method with the current artifact in the dataset is 
also added. 

 



 
Figure 4. Paraview project window with a cone added and a calculation block of the  

Calculator type added. The block generates vectors based on the control points of this cone. 
The "built-in" vector visualization method in the block has been activated. 

 
A dual approach is also possible. For example, the system Kepler.gl allows you to add an 

arbitrary visualization method to the project (from the list), and then establish its relation-
ship with the data elements added to the project. When establishing such a connection, users 
can select only data elements that are compatible with the visualization method being config-
ured. 

Some systems allow performing calculations on the data added to the project. Calculations 
can be performed in command mode: upon completion of such calculation, its result is saved 
in the project as a new data element. Calculations can also be carried out in process mode. In 
this case, the object describing the calculation block is saved in the project and is available for 
further adjustment and subsequent recalculation. The result of such calculations is available 
in the form of a special data artifact — the output parameter of this calculation block. Such 
blocks are sometimes called filters. 

Block output parameters can be used as data sources for other blocks - as input parame-
ters. By joining blocks by inputs and outputs, it is possible to form a pipeline from transfor-
mation blocks. Pipelines can react to changing parameters, including parameters of interme-
diate links, and automatically recalculate with new versions of data. 

Hybrid calculation models are also implemented when the user is given the opportunity 
both to carry out a one-time calculation in command mode and to build a pipeline saved in 
the project from configured blocks, which is suitable for repetitive calculations. Such a hybrid 
model is offered, for example, by the QGIS processing toolbox. 

As a result of calculations, new data is generated that needs to be visualized. Some systems 
take into account such new data as well as those added by users to the project — they allow 
linking this data with the selected visualization method. In other systems, calculation blocks 
are equipped with built-in visualization tools, and then the result of the block is both data and 
visual images that can be "turned on", see for example fig. 4. 



The application of a series of computational blocks and the subsequent connection of visu-
alization methods with them is, in our opinion, an essential part of user programming in uni-
versal visualization systems. 

8. Systems analysis of visualization systems 
The origins of systems analysis and its methodological concepts lie in those disciplines that 

deal with decision-making problems: operations research and control theory. To work with 
the visualization system the user must control it. For example, if the work with the visualiza-
tion system is considered as visual programming, then the user solves the problem of compu-
tational steering. 

Let's consider such an important aspect of visualization as the computational steering of 
supercomputers, firstly related to online visualization and secondly related to computational 
steering [21]. Here is a list of typical tasks in this area: 

1. Debug of supercomputer programs. The program needs debugging at different levels, for 
example, mathematical models, algorithms, and their implementations, as well as at level of 
performance debugging. In time debugging programs it is useful to be able to get information 
about the launch of the programand to interact with it. 

2. Evaluation of the progress of the computation and its current state. It allows estimation 
of how far the calculation has progressed, to make a decision on the expediency of its contin-
uation, to conduct a visual analysis of the correctness of both the algorithm run and the com-
putational system components. 

3. Online adjusting the program launch parameters. During the evaluation of the program, 
there may be a need to make adjustments to the data and parameters of computational algo-
rithms in the program execution continuation mode. This can be useful both for debugging 
programs and for conducting parametric research in a computational experiment. 

4. Interactive computational experiment in the mode "what-if?". The researcher interac-
tively sets the initial data of the task, receives the result, analyzes it, and again sets the initial 
data. This differs from the batch mode of the computational experiment precisely in the in-
teractive mode. Here the decision on the options for the initial data and the directions of the 
calculations is made by the researcher in the online mode. 

5. A computer program that simulates the environment, called a virtual test stand. In it, re-
searchers can interactively perform various experiments that are more structurally complex 
than experiments in the “what-if” mode. Also, virtual test stands can be used as simulators to 
develop people's skills [22]. 

6. Automated control or the control of the program runs from another program, for exam-
ple, solving an inverse problem by enumerating its initial data and parameters [23]. 

7. Interaction with other supercomputer programs. Supercomputer computing can be built 
as an ensemble of interacting programs. Each program uses its own supercomputer pro-
gramming technologies. Programs are configured in such a way that during the program runs 
they exchange current results. For example, each program can calculate its own side of a 
physical phenomenon and an exchange takes place between them in order to enrich infor-
mation about the simulated environment [24]. Also, this direction allows you to simulate the 
operation of control systems when the effect of the control action is immediately calculated 
and is closed by means of "virtual sensors" back to the control system [25]. 

8. Participation in a natural experiment. In modern practice, the following situation began 
to arise. A series of full-scale experiments is being carried out at the facility and in order to 
make a decision on the next step of the experiment, it is necessary to quickly process the cur-
rent results [26]. The necessary processing speed can be provided by supercomputer technol-
ogies, whereas the program running in such a situation should not be run in batch mode, 
however it should be run online in order to respond and process data quickly. In practice, it 
even happens that the facility is located in one part of the planet but the supercomputer is lo-
cated in another [26]. 



An analysis of these examples leads to the idea that the visual pipeline as part of a comput-
er modeling cycle [27] can be considered not only from the point of view of operations re-
search but also from the point of view of a dynamical system. 

A computer modeling cycle can be thought of as a data mapping sequence. For example, 
the data flow model can be represented not as a static graph, but as a dynamic one, and the 
routing of flows is not scalar, but vector, that is, vector-based flow routing. At any given time, 
a dynamical system has a state representing a point in an appropriate state space. A phase 
space is the set of all possible configurations of a system. Thus, a dynamical system is charac-
terized by its initial state and the law by which the system passes from the initial state to an-
other. Therefore, the interactive process, which is displayed on the screen, creates a trajectory 
in a phase space. 

The authors actively use the concept of a trajectory when creating animations that are con-
sidered a continuous map in terms of perception. In this case, the trajectory is a linear ap-
proximation between the target states of the program. Target states define a set of those 
states that should be visited during the animation. 

Let's apply one of the systems analysis approaches, called abstracting, related to the visual 
pipeline being the part of a computer modeling cycle. Data abstraction models are generaliza-
tions that allow you to abstract from the source and ontology of data during visual analysis. 
Regarding a computer modeling cycle, different levels of abstraction can be distinguished. 
For example, the mathematical level of data abstraction includes mathematical, algorithmic, 
software, visual, and visual analytics models. The authors propose to consider a structural or 
semantic unit of visual analysis, also called a unit, as a continuous map of a class of data sub-
sets onto a logical space. Since the mapping of data to a visual representation is not an iso-
morphism, it is necessary to take into account the mathematical level of data abstraction [28]. 

The structural unit of visual analysis is a visually perceived image, interpreted as a truth 
answer, in the original source [29] an unambiguous answer to one of the intermediate ques-
tions. In terms of system analysis, the structural unit of visual analysis is a controlled system 
S with feedback R(t), see fig. 5. 

 

 
Figure 5. Structural unit of visual analysis [29]. 

 
Since visualization becomes the medium of an automated analytical process, areas related 

to self-organization are of interest to visual analytics: dissipative systems, autonomous com-
puting, and synergetic. For example, it is possible to clarify the concept of the structural unit 
of visual analysis in fig. 5 from the standpoint of dissipative systems. 

A dissipative system is a quasi-stationary open system, a characteristic feature of which is 
the process of self-organization, which occurs as a result of the action of a negative vector, for 
example, the friction force. Let us explain the difference between a dissipative system and an 
optimal control problem in the case of linear systems: 

ẏ=Ay-Bu, 
where u is the optimal control to be found. 



Since the dissipative system is an open system, the control V(t) comes from outside, it is 
initially set. The introduction of a negative vector or negative feedback R(t) narrows the range 
of problems to models with saturation. The emergence of feedback should be considered not 
only as a result of purposeful but also chaotic, random user actions, for example, similar to 
Brownian motion, since the self-organization process occurs much faster when there are ex-
ternal and internal noises in the system. Such control is called stochastic closed-loop control 
[30]. User control U(t) is desirable to be optimal u=u(U(t),V(t)), at least it must exist. For ex-
ample, you can offer the user yi  - a monotonically convergent sequence of solutions [31]. 

The paper [32] provides a justification for the application and considers the benefits of the 
parameters control of the visual program, as well as of the supercomputer program. If the 
mathematical model is taken into account during abstracting, then, for example, a parametric 
model of a white-noise random process [33] or tensor expansions [34] can be applied to this 
approach. From a programming point of view, parameter’s control can be called parameter’s 
abstracting. (Recall that abstracting is considered in the context of data abstraction models). 
Visual abstract parameters are defined as a special case of abstract data types whose function 
range is the dynamic visual image [35]. One of the examples considered in this work is an ab-
straction called a modifier. Including, the modifier from the point of view of the program-
ming language is a component, and from the point of view of visualization is a structural or 
semantic unit of visual analysis. 

As stated in [36], there are certain connections between dissipative systems and Anokhin's 
theory of functional systems, one of the areas of general systems theory, at least in relation to 
visual perception. When studying such factors as structure, composition, state, and environ-
ment in systems theory, large-scale studies of elements organization of the lower structural-
hierarchical levels, that is the system infrastructure, are acceptable. In this case, each element 
is considered as a relatively heteronomous, but also relatively autonomous system to the 
structure, environment, composition, and state of which the principles of system decomposi-
tion are equally applied. The authors introduce the concept of an autonomous algorithm, 
which is a composition, for example, of the modifier, calculation, and view. For example, au-
tonomous algorithms are online parallel computing services. The decomposition of the data 
flow into autonomous algorithms allows us to consider the dynamic system as a stationary 
one in the neighborhood of the autonomous algorithm. 

One of the system methods is verification. The authors come to the conclusion that formal 
approaches should be applied to applications and visualization systems simultaneously with 
visual verification. First of all, of interest are parametric models related to stochastic control, 
sensitive analysis, data filtering, and visual calibration of model parameters. Formalization is 
not an end in itself, it is important that there is a certain pragmatism, that is, the application 
of modeling to solve specific visualization applications. For instance, designing a program-
ming language in order to develop specialized visual systems or considering the rendering 
equation as a diffusion process. 

9. Thoughts on visualization pipeline 
The concept of computer visualization implies the construction of visual images and their 

display with the help of one or another output equipment. To describe the process of building 
visual images, a model called the visualization pipeline [37,38] is often used. The visuali-
zation pipeline describes the (step-wise) process of creating visual representations of data 
[39]. 

 



 
Figure 6. A classical view of the visualization pipeline [39]. 

 
1. Data Analysis: data is prepared for visualization (e.g., by applying a smoothing fil-

ter, interpolating missing values, or correcting erroneous measurements). 
2. Filtering: selection of data portions to be visualized. 
3. Mapping: focus data is mapped to geometric primitives (e.g., points, lines) and their 

attributes (e.g., color, position, size); the most critical step for achieving expressiveness and 
effectiveness. 

4. Rendering: geometric data is transformed to image data. 
 
The visualization pipeline is the only one point of view onto the process of visualization. 

We would like to annotate it with the following. 
Actually, the visualization pipeline is a networked graph, not a straightforward pipeline. 

It contains a lot of interconnected nodes, see figure 7. There are a lot of reasons for that, one 
of which is the following. 

The “classical” view of the visualization pipeline does not directly express the generation of 
additional data artifacts. However, in practice, such a step exists. For example, one may 
desire to see a vector field of normals of the body under study (as in fig. 4). In that case, the 
normals will be computed and displayed. This adds “branching” to the pipeline and invokes 
additional computations. That is, data transforms into new data. Thus, a visualization pipe-
line may be thought of as a view of the part of the visualization process (e.g. one visualization 
contains a lot of pipelines, maybe growing from one root). 

 

 
Figure 7. A real life of the visualization pipeline. The networked nature of the pipeline is 

shown. Interestingly, this figure is a screenshot from a real user interface of the Scivi [13] vis-
ualization system, which is based on direct manipulation of the visualization pipeline. 

 
We would like to note that each part of the visualization pipeline is a computational pro-

cess. This also includes rendering. Thus, the visualization pipeline defines computation. 
As it was mentioned above in section 3, when a user works with a scientific visualization 

system, he actually constructs and manages the visualization pipeline. One may think that a 



user just refines the pipeline, for example by changing parameters of its nodes; however, we 
claim that in common cases the user controls the pipeline structure. A user may load data and 
visualize it through some pre-defined views, but at the moment he desires to look in a new 
way, for example, to switch the view, he begins changing the pipeline. 

Users may do this employing visual tools, for example, using traditional user interfaces, as 
in fig. 4; using graph-based visual interfaces, as in fig. 7; or probably using some other visual 
models. He may also achieve the same effects using general-purpose programming languages, 
which is discussed in section 2. 

We conclude that at least within visualization systems, both the use of graphical user inter-
faces and general-purpose programming languages are essentially the same processes. Be-
cause in both cases a user configures the computational process, in the case of visualization 
systems this computational process is the visualization pipeline. 

This leads us to the idea that graphical interfaces may be enriched with ideas from general-
purpose textual languages and vice versa. As it is shown in the paper, this idea is widely used 
in practice. Modifiers, used in graphical interfaces (section 4), are counterparts of mixins 
from general-purpose languages and implement the idea of composition over inheritance. Ex-
tensions are a kind of program libraries: one may be attached to a project and then entities 
declared in it might be used. Extensions even may influence the program on their own behalf, 
just by the fact that they are attached because they receive control during initialization. Ab-
stractions and combinations, as a general idea of constructing things, are also widely used. 

More ideas to come. For example, in the programming world, the idea of copy-paste devel-
opment is widely used nowadays. One may find a working solution somewhere on the Inter-
net, and copy its code to his own project. This is a kind of distributed abstraction, where ab-
stractions are shared and used on the responsibility of participants. As well as there are more 
organized processes for the same purpose, like package management systems. Same things 
might happen for GUI. They already actually happen in the form of asset stores, asset and ex-
perience interchange forums, and “how-to” articles. In the latter case, the “code” might not be 
copy-pasted but might be reproduced. 

It is interesting that visual interfaces have some distinctive features from general-purpose 
programming languages. For example, we noted the following aspect. In textual PL, pro-
grammers feel comfortable when using the same syntax on any level of abstraction. For ex-
ample, it is considered normal that the code of the sinus function and the code of some com-
plex formula function are expressed in the same language. 

In contrast, in graphical interfaces users feel uncomfortable and lost in case when the visu-
al structure of the interface repeats. It seems that is why we have to use menus, tabs, buttons, 
modal activities, and dialogs, which again contain menus, tabs, and so on. We need to visually 
underline the context and abstraction level where the current user focus resides. That is, pro-
grams should change their visual appearance when the context changes. If this was not true, 
all visual programs might have an interface like regedit (registry editor) in Windows. A lot of 
interesting ideas of human-computer visual interaction and their evolution are described in 
[40]. 

Sometimes textual PLs also use the idea of visual differentiation of various context levels. 
For example, in Python, a colon is used to depict if statements, cycles, function definitions, 
and other special forms. However, that is not necessary, e.g. Lisp language uses its ordinal 
syntax for these operations. Another example is Python’s function decorators. Although they 
are just functions, a special syntax for calling them is introduced (by prefixing a decorator 
name with @ symbol). 

In some visualization tasks, it is not convenient to manage the visual pipeline directly. 
Graphical interfaces already hide such management, by introducing various interface abstrac-
tions and logical models on top of them. However, one might go even deeper, and introduce 
drastically different models for pipeline management. For example, in [41] the following vis-
ualization pipeline alternatives are introduced: functional field model, MapReduce model, 
and domain-specific languages.  



We think this is a commonly used approach when a particular task is suggested to be 
solved with appropriate tools, probably with substantially different interactions and logical 
models. For example in mathematics, a differential form of a function is sometimes found 
more convenient to define the function, instead of using its traditional formula. 

Sometimes it is even found convenient to suggest more than one method of doing the same 
thing, and users might choose a comfortable one according to their situation. For example, in 
the XCluDev platform, a user might manage links between objects of the visualization pipe-
line in two modes: 1) by managing individual links using a visual interface, and 2) by editing 
all links in the project in a textual form (and even copy-paste them). 

10. Conclusions 
The paper provides an overview of some elements of the logical models of user interfaces 

aiming at scientific visualization systems. We consider these elements to be effective, provid-
ing a wide range of possibilities for the formation of visual images. This is indirectly con-
firmed by the fact that they are implemented in many visualization systems. Their application 
is possible both in new universal visualization systems and, as needed, in specialized systems. 
We are experimenting with these models by developing a programming library for scientific 
visualization systems [42]. Its codes are published on the Internet at 
https://github.com/viewzavr address. 

Interacting with the visualization system, the user acts in the logical model offered to him. 
Its clarity, expressiveness and efficiency are the key to success. 
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